系列(地层学)
变压器
计算机科学
比例(比率)
计量经济学
数学
工程类
地理
地质学
电气工程
地图学
电压
古生物学
作者
Peng Chen,Yingying Zhang,Yunyao Cheng,Yang Shu,Yihang Wang,Qingsong Wen,Bin Yang,Chenjuan Guo
出处
期刊:Cornell University - arXiv
日期:2024-02-04
被引量:3
标识
DOI:10.48550/arxiv.2402.05956
摘要
Transformer-based models have achieved some success in time series forecasting. Existing methods mainly model time series from limited or fixed scales, making it challenging to capture different characteristics spanning various scales. In this paper, we propose multi-scale transformers with adaptive pathways (Pathformer). The proposed Transformer integrates both temporal resolution and temporal distance for multi-scale modeling. Multi-scale division divides the time series into different temporal resolutions using patches of various sizes. Based on the division of each scale, dual attention is performed over these patches to capture global correlations and local details as temporal dependencies. We further enrich the multi-scale transformer with adaptive pathways, which adaptively adjust the multi-scale modeling process based on the varying temporal dynamics in the input time series, improving the prediction accuracy and generalization of Pathformer. Extensive experiments on eleven real-world datasets demonstrate that Pathformer not only achieves state-of-the-art performance by surpassing all current models but also exhibits stronger generalization abilities under various transfer scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI