清脆的
反式激活crRNA
重组酶聚合酶扩增
桑格测序
放大器
分子生物学
计算生物学
生物
化学
核糖核酸
Cas9
环介导等温扩增
聚合酶链反应
DNA
基因
遗传学
突变
作者
Qian Sun,Hongqing Lin,Yuan Li,Liping Yuan,Baisheng Li,Yunan Ma,Haiying Wang,Xiaoling Deng,Hongliang Chen,Shixing Tang
标识
DOI:10.1128/spectrum.03645-23
摘要
ABSTRACT CRISPR-Cas technology has widely been applied to detect single-nucleotide mutation and is considered as the next generation of molecular diagnostics. We previously reported the combination of nucleic acid amplification (NAA) and CRISPR-Cas12a system to distinguish major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. However, the mixture of NAA and CRISPR-Cas12a reagents in one tube could interfere with the efficiency of NAA and CRISPR-Cas12a cleavage, which in turn affects the detection sensitivity. In the current study, we employed a novel photoactivated CRISPR-Cas12a strategy integrated with recombinase polymerase amplification (RPA) to develop one-pot RPA/CRISPR-Cas12a genotyping assay for detecting SARS-CoV-2 Omicron sub-lineages. The new system overcomes the potential inhibition of RPA due to early CRISPR-Cas12a activation and cleavage of the target template in traditional one-pot assay using photocleavable p-RNA, a complementary single-stranded RNA to specifically bind crRNA and precisely block Cas12a activation. The detection can be finished in one tube at 39℃ within 1 h and exhibits a low limit of detection of 30 copies per reaction. Our results demonstrated that the photocontrolled one-pot RPA/CRISPR-Cas12a assay could effectively identify three signature mutations in the spike gene of SARS-CoV-2 Omicron variant, namely, R346T, F486V, and 49X, and distinguish Omicron BA.1, BA.5.2, and BF.7 sub-lineages. Furthermore, the assay achieved a sensitivity of 97.3% and a specificity of 100.0% and showed a concordance of 98.3% with Sanger sequencing results. IMPORTANCE We successfully developed one-pot recombinase polymerase amplification/CRISPR-Cas12a genotyping assay by adapting photocontrolled CRISPR-Cas technology to optimize the conditions of nucleic acid amplification and CRISPR-Cas12a-mediated detection. This innovative approach was able to quickly distinguish severe acute respiratory syndrome coronavirus 2 Omicron variants and can be readily modified for detecting any nucleic acid mutations. The assay system demonstrates excellent clinical performance, including rapid detection, user-friendly operations, and minimized risk of contamination, which highlights its promising potential as a point-of-care testing for wide applications in resource-limiting settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI