Turning brain MRI into diagnostic PET: 15O-water PET CBF synthesis from multi-contrast MRI via attention-based encoder–decoder networks

正电子发射断层摄影术 脑血流 磁共振成像 金标准(测试) 计算机科学 核医学 Pet成像 医学 对比度(视觉) 生物医学工程 放射科 人工智能 内科学
作者
Ramy Hussein,David Shin,Moss Y. Zhao,Jia Guo,Guido Davidzon,Gary K. Steinberg,Michael E. Moseley,Greg Zaharchuk
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:93: 103072-103072 被引量:1
标识
DOI:10.1016/j.media.2023.103072
摘要

Accurate quantification of cerebral blood flow (CBF) is essential for the diagnosis and assessment of a wide range of neurological diseases. Positron emission tomography (PET) with radiolabeled water (15O-water) is the gold-standard for the measurement of CBF in humans, however, it is not widely available due to its prohibitive costs and the use of short-lived radiopharmaceutical tracers that require onsite cyclotron production. Magnetic resonance imaging (MRI), in contrast, is more accessible and does not involve ionizing radiation. This study presents a convolutional encoder–decoder network with attention mechanisms to predict the gold-standard 15O-water PET CBF from multi-contrast MRI scans, thus eliminating the need for radioactive tracers. The model was trained and validated using 5-fold cross-validation in a group of 126 subjects consisting of healthy controls and cerebrovascular disease patients, all of whom underwent simultaneous 15O-water PET/MRI. The results demonstrate that the model can successfully synthesize high-quality PET CBF measurements (with an average SSIM of 0.924 and PSNR of 38.8 dB) and is more accurate compared to concurrent and previous PET synthesis methods. We also demonstrate the clinical significance of the proposed algorithm by evaluating the agreement for identifying the vascular territories with impaired CBF. Such methods may enable more widespread and accurate CBF evaluation in larger cohorts who cannot undergo PET imaging due to radiation concerns, lack of access, or logistic challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大气的秋完成签到,获得积分10
2秒前
桐桐应助BB采纳,获得10
2秒前
2秒前
2秒前
曙光完成签到,获得积分10
3秒前
3秒前
大方嵩发布了新的文献求助10
4秒前
陌路发布了新的文献求助20
4秒前
Muqi完成签到,获得积分10
4秒前
5秒前
marinemiao发布了新的文献求助10
6秒前
6秒前
丘比特应助wzxxxx采纳,获得10
7秒前
科研通AI5应助飘逸蘑菇采纳,获得10
7秒前
科研通AI2S应助cc采纳,获得10
8秒前
8秒前
8秒前
spray完成签到,获得积分10
9秒前
范范完成签到,获得积分20
9秒前
少年发布了新的文献求助10
9秒前
大力鱼发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
shilong.yang完成签到,获得积分10
11秒前
jy发布了新的文献求助10
12秒前
13秒前
13秒前
梦里发布了新的文献求助10
14秒前
falcon完成签到 ,获得积分10
15秒前
劈里啪啦发布了新的文献求助10
16秒前
耿强发布了新的文献求助10
16秒前
科研通AI5应助坚强的樱采纳,获得10
16秒前
陈杰发布了新的文献求助10
16秒前
nozero完成签到,获得积分10
18秒前
澜生发布了新的文献求助10
19秒前
在水一方应助惠惠采纳,获得10
19秒前
852应助zZ采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794