Supervised Phenotype Discovery From Multimodal Brain Imaging

人工智能 计算机科学 神经影像学 稳健性(进化) 机器学习 医学影像学 模式 模式识别(心理学) 认知 无监督学习 深度学习 神经科学 心理学 社会学 基因 生物化学 社会科学 化学
作者
Weikang Gong,Song Bai,Ying‐Qiu Zheng,Stephen M. Smith,Christian F. Beckmann
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (3): 834-849 被引量:13
标识
DOI:10.1109/tmi.2022.3218720
摘要

Data-driven discovery of image-derived phenotypes (IDPs) from large-scale multimodal brain imaging data has enormous potential for neuroscientific and clinical research by linking IDPs to subjects' demographic, behavioural, clinical and cognitive measures (i.e., non-imaging derived phenotypes or nIDPs). However, current approaches are primarily based on unsupervised approaches, without the use of information in nIDPs. In this paper, we proposed a semi-supervised, multimodal, and multi-task fusion approach, termed SuperBigFLICA, for IDP discovery, which simultaneously integrates information from multiple imaging modalities as well as multiple nIDPs. SuperBigFLICA is computationally efficient and largely avoids the need for parameter tuning. Using the UK Biobank brain imaging dataset with around 40,000 subjects and 47 modalities, along with more than 17,000 nIDPs, we showed that SuperBigFLICA enhances the prediction power of nIDPs, benchmarked against IDPs derived by conventional expert-knowledge and unsupervised-learning approaches (with average nIDP prediction accuracy improvements of up to 46%). It also enables the learning of generic imaging features that can predict new nIDPs. Further empirical analysis of the SuperBigFLICA algorithm demonstrates its robustness in different prediction tasks and the ability to derive biologically meaningful IDPs in predicting health outcomes and cognitive nIDPs, such as fluid intelligence and hypertension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助tiantian采纳,获得10
1秒前
Lucas应助sara采纳,获得10
1秒前
1秒前
2秒前
2秒前
马不停蹄完成签到,获得积分10
4秒前
听话的豆芽完成签到,获得积分10
4秒前
4秒前
大模型应助keyanyan采纳,获得10
5秒前
科研通AI5应助亲亲紫荆采纳,获得30
5秒前
司空豁应助宇小姐采纳,获得10
6秒前
6秒前
6秒前
庆幸发布了新的文献求助10
7秒前
YF_1987发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
赘婿应助愤怒的梦柏采纳,获得10
9秒前
领导范儿应助KD357采纳,获得10
9秒前
嘻嘻嘻发布了新的文献求助10
9秒前
9秒前
10秒前
文刀发布了新的文献求助10
10秒前
lll发布了新的文献求助20
10秒前
zhe完成签到 ,获得积分10
10秒前
陈惠卿88完成签到,获得积分10
11秒前
共享精神应助木木三采纳,获得10
11秒前
11秒前
考博上岸26完成签到 ,获得积分10
11秒前
华仔应助xunoverflow采纳,获得10
12秒前
13秒前
FeLaN发布了新的文献求助10
13秒前
bkagyin应助庆幸采纳,获得10
13秒前
李雩完成签到 ,获得积分10
13秒前
14秒前
angelalxj关注了科研通微信公众号
14秒前
14秒前
小栩发布了新的文献求助10
15秒前
blank发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343