理论(学习稳定性)
序列(生物学)
热稳定性
蛋白质设计
蛋白质测序
生成语法
定向进化
蛋白质进化
生成设计
计算机科学
计算生物学
生物系统
生物
人工智能
肽序列
机器学习
生物化学
工程类
遗传学
蛋白质结构
基因
化学工程
突变体
相容性(地球化学)
作者
Pengfei Tian,Adrien Lemaire,Fabien Sénéchal,Olivier Habrylo,Viviane Antonietti,Pascal Sonnet,Valérie Lefebvre,Frederikke Isa Marin,Robert B. Best,Jérôme Pelloux,Davide Mercadante
标识
DOI:10.1002/anie.202202711
摘要
Abstract Efficient design of functional proteins with higher thermal stability remains challenging especially for highly diverse sequence variants. Considering the evolutionary pressure on protein folds, sequence design optimizing evolutionary fitness could help designing folds with higher stability. Using a generative evolution fitness model trained to capture variation patterns in natural sequences, we designed artificial sequences of a proteinaceous inhibitor of pectin methylesterase enzymes. These inhibitors have considerable industrial interest to avoid phase separation in fruit juice manufacturing or reduce methanol in distillates, averting chromatographic passages triggering unwanted aroma loss. Six out of seven designs with up to 30 % divergence to other inhibitor sequences are functional and two have improved thermal stability. This method can improve protein stability expanding functional protein sequence space, with traits valuable for industrial applications and scientific research.
科研通智能强力驱动
Strongly Powered by AbleSci AI