Architecting Ultra-Robust Zr(IV) Metal–Organic Framework for Energy-Efficient Desiccant Air Conditioning

空调 冷冻机 工艺工程 湿度 吸附剂 化学 吸附 可再生能源 金属有机骨架 暖通空调 吸附 水分 化学工程 机械工程 热力学 有机化学 电气工程 工程类 物理
作者
Wei Gong,Haomiao Xie,Kyung Ho Cho,Xianhui Tang,Jaedeuk Park,Zhijie Chen,Jinqiao Dong,Omar K. Farha,Yong Cui
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c15087
摘要

Air-conditioning systems, composed mainly of humidity control and heat reallocation units, play a pivotal role in upholding superior air quality and human well-being across diverse environments ranging from international space stations and pharmacies to granaries and cultural relic preservation sites, and to commercial and residential buildings. The adoption of sorbent water as the working pair and low-grade renewable or waste heat in adsorption-driven air-conditioning presents a state-of-the-art solution, notably for its energy efficiency and eco-friendliness vis-à-vis conventional electricity-driven vapor compression cycles. Here, we introduce a rational π-extension strategy to engineer an ultrarobust and highly porous zirconium metal–organic framework (Zr-MOF). This MOF sorbent showcases hysteresis-free S-shaped water sorption isotherms, characterized by a rapid ascent within the 40–60% relative humidity range with a working capacity of 0.63 g g–1, thus facilitating intelligent indoor humidity regulation. Moreover, we demonstrate, for the first time, that this material with such distinctive isotherms can yield a 10 °C temperature lift between ambient and chiller output with a high cooling capacity of 336 kW h m–3 per cycle, even at exceptionally low driving temperatures (below 50 °C), while also delivering a substantial coefficient of performance of 0.96. This material is amenable to scale-up and is chemically ultrastable that can endure strong acids and be cycled for at least 200 runs without compromising any of its capacity. These exceptional attributes signify the viability of this material as a pragmatic alternative for deployment in energy-efficient desiccant air-conditioning systems, particularly in hot and humid climatic regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
1234发布了新的文献求助10
3秒前
在水一方应助黎书禾采纳,获得10
4秒前
4秒前
梁朝伟应助nacheol采纳,获得10
5秒前
XJL应助大大大王采纳,获得30
5秒前
6秒前
明云发布了新的文献求助10
6秒前
搜集达人应助孙远欣采纳,获得10
7秒前
利呀完成签到,获得积分10
8秒前
9秒前
谦让的萝莉完成签到,获得积分10
9秒前
ohhhh完成签到,获得积分10
9秒前
wqqwd应助活力寻琴采纳,获得10
12秒前
12秒前
13秒前
怕黑的纸鹤完成签到 ,获得积分10
15秒前
万能图书馆应助Cindy采纳,获得10
16秒前
18秒前
xiaozhang发布了新的文献求助10
19秒前
19秒前
乐正亦寒关注了科研通微信公众号
20秒前
shirui完成签到 ,获得积分10
21秒前
liars发布了新的文献求助10
24秒前
华仔应助田田采纳,获得10
25秒前
26秒前
26秒前
铜锣湾小研仔应助mbf采纳,获得10
27秒前
30秒前
Pureasy发布了新的文献求助10
31秒前
无私代容完成签到,获得积分10
31秒前
33秒前
34秒前
甜甜玫瑰应助啦啦啦采纳,获得10
34秒前
一枚研究僧举报秦长青求助涉嫌违规
37秒前
39秒前
Singularity应助jiangshuo采纳,获得10
39秒前
40秒前
美有姬完成签到 ,获得积分10
41秒前
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293375
求助须知:如何正确求助?哪些是违规求助? 2929421
关于积分的说明 8441926
捐赠科研通 2601580
什么是DOI,文献DOI怎么找? 1420015
科研通“疑难数据库(出版商)”最低求助积分说明 660484
邀请新用户注册赠送积分活动 643069