A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates

计算机科学 朴素贝叶斯分类器 人工智能 脑电图 分类器(UML) 睡眠阶段 交叉验证 可穿戴计算机 模式识别(心理学) 语音识别 多导睡眠图 支持向量机 心理学 精神科 嵌入式系统
作者
Stavros I. Dimitriadis,Christos Salis,David E.J. Linden
出处
期刊:Clinical Neurophysiology [Elsevier BV]
卷期号:129 (4): 815-828 被引量:58
标识
DOI:10.1016/j.clinph.2017.12.039
摘要

Limitations of the manual scoring of polysomnograms, which include data from electroencephalogram (EEG), electro-oculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG) channels have long been recognized. Manual staging is resource intensive and time consuming, and thus considerable effort must be spent to ensure inter-rater reliability. As a result, there is a great interest in techniques based on signal processing and machine learning for a completely Automatic Sleep Stage Classification (ASSC). In this paper, we present a single-EEG-sensor ASSC technique based on the dynamic reconfiguration of different aspects of cross-frequency coupling (CFC) estimated between predefined frequency pairs over 5 s epoch lengths. The proposed analytic scheme is demonstrated using the PhysioNet Sleep European Data Format (EDF) Database with repeat recordings from 20 healthy young adults. We validate our methodology in a second sleep dataset. We achieved very high classification sensitivity, specificity and accuracy of 96.2 ± 2.2%, 94.2 ± 2.3%, and 94.4 ± 2.2% across 20 folds, respectively, and also a high mean F1 score (92%, range 90–94%) when a multi-class Naive Bayes classifier was applied. High classification performance has been achieved also in the second sleep dataset. Our method outperformed the accuracy of previous studies not only on different datasets but also on the same database. Single-sensor ASSC makes the entire methodology appropriate for longitudinal monitoring using wearable EEG in real-world and laboratory-oriented environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布鲁爱思发布了新的文献求助20
1秒前
苏航完成签到,获得积分20
1秒前
地瓜小菜完成签到,获得积分10
1秒前
花花完成签到 ,获得积分10
2秒前
机智橘子发布了新的文献求助10
4秒前
LIU发布了新的文献求助10
4秒前
英姑应助淡水痕采纳,获得10
4秒前
夜安发布了新的文献求助10
4秒前
科目三应助忧郁的猕猴桃采纳,获得10
6秒前
6秒前
zhaoxi完成签到 ,获得积分10
7秒前
7秒前
Owen应助公孙世往采纳,获得10
10秒前
我是老大应助魅猫使者采纳,获得10
11秒前
写论文的圈圈完成签到,获得积分10
11秒前
wonhui发布了新的文献求助10
12秒前
12秒前
13秒前
卡卡西应助科研通管家采纳,获得20
13秒前
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
yookia应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
14秒前
bububusbu完成签到,获得积分10
14秒前
刘爽应助科研通管家采纳,获得10
14秒前
yookia应助科研通管家采纳,获得10
14秒前
14秒前
利利应助科研通管家采纳,获得10
14秒前
卡卡西应助科研通管家采纳,获得20
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
15秒前
所所应助科研通管家采纳,获得10
15秒前
secbox完成签到,获得积分10
15秒前
超帅连虎发布了新的文献求助30
18秒前
干净月亮完成签到,获得积分10
19秒前
wenbo完成签到,获得积分0
19秒前
19秒前
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150