Continuous Finger Gesture Spotting and Recognition Based on Similarities Between Start and End Frames

定位 手势 计算机科学 手势识别 语音识别 人工智能 计算机视觉
作者
Gibran Benítez-García,Muhammad Haris,Yoshiyuki Tsuda,Norimichi Ukita
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 296-307 被引量:11
标识
DOI:10.1109/tits.2020.3010306
摘要

Touchless in-car devices controlled by single and continuous finger gestures can provide comfort and safety on driving while manipulating secondary devices. Recognition of finger gestures is a challenging task due to (i) similarities between gesture and non-gesture frames, and (ii) the difficulty in identifying the temporal boundaries of continuous gestures. In addition, (iii) the intraclass variability of gestures' duration is a critical issue for recognizing finger gestures intended to control in-car devices. To address difficulties (i) and (ii), we propose a gesture spotting method where continuous gestures are segmented by detecting boundary frames and evaluating hand similarities between the start and end boundaries of each gesture. Subsequently, we introduce a gesture recognition based on a temporal normalization of features extracted from the set of spotted frames, which overcomes difficulty (iii). This normalization enables the representation of any gesture with the same limited number of features. We ensure real-time performance by proposing an approach based on compact deep neural networks. Moreover, we demonstrate the effectiveness of our proposal with a second approach based on hand-crafted features performing in real-time, even without GPU requirements. Furthermore, we present a realistic driving setup to capture a dataset of continuous finger gestures, which includes more than 2,800 instances on untrimmed videos covering safety driving requirements. With this dataset, our both approaches can run at 53 fps and 28 fps on GPU and CPU, respectively, around 13 fps faster than previous works, while achieving better performance (at least 5% higher mean tIoU).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷白凡完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
慕青应助AoAoo采纳,获得10
4秒前
li完成签到,获得积分10
5秒前
6秒前
ss完成签到,获得积分20
7秒前
8秒前
棋士发布了新的文献求助10
9秒前
glzh123发布了新的文献求助10
9秒前
完美世界应助专注的乐松采纳,获得10
10秒前
温衡的言希完成签到 ,获得积分10
10秒前
11秒前
gincle完成签到 ,获得积分10
12秒前
翻滚的肉夹馍完成签到,获得积分10
13秒前
13秒前
xuanqing发布了新的文献求助10
14秒前
gao0505完成签到,获得积分10
14秒前
老板多加香菜完成签到,获得积分10
16秒前
gao发布了新的文献求助100
17秒前
AoAoo发布了新的文献求助10
17秒前
素龙完成签到,获得积分10
18秒前
hbzyydx46完成签到,获得积分10
19秒前
科研闲人完成签到,获得积分10
19秒前
JamesPei应助astost采纳,获得10
20秒前
20秒前
21秒前
21秒前
缥缈的星星完成签到,获得积分10
22秒前
25秒前
iwww发布了新的文献求助10
25秒前
sqc发布了新的文献求助10
26秒前
SYLH应助guojingjing采纳,获得10
27秒前
后会无期完成签到,获得积分10
27秒前
28秒前
29秒前
自然的戒指完成签到,获得积分10
30秒前
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951098
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082428
捐赠科研通 3226957
什么是DOI,文献DOI怎么找? 1784092
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801069