Continuous Finger Gesture Spotting and Recognition Based on Similarities Between Start and End Frames

定位 手势 计算机科学 手势识别 语音识别 人工智能 计算机视觉
作者
Gibran Benítez-García,Muhammad Haris,Yoshiyuki Tsuda,Norimichi Ukita
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 296-307 被引量:11
标识
DOI:10.1109/tits.2020.3010306
摘要

Touchless in-car devices controlled by single and continuous finger gestures can provide comfort and safety on driving while manipulating secondary devices. Recognition of finger gestures is a challenging task due to (i) similarities between gesture and non-gesture frames, and (ii) the difficulty in identifying the temporal boundaries of continuous gestures. In addition, (iii) the intraclass variability of gestures' duration is a critical issue for recognizing finger gestures intended to control in-car devices. To address difficulties (i) and (ii), we propose a gesture spotting method where continuous gestures are segmented by detecting boundary frames and evaluating hand similarities between the start and end boundaries of each gesture. Subsequently, we introduce a gesture recognition based on a temporal normalization of features extracted from the set of spotted frames, which overcomes difficulty (iii). This normalization enables the representation of any gesture with the same limited number of features. We ensure real-time performance by proposing an approach based on compact deep neural networks. Moreover, we demonstrate the effectiveness of our proposal with a second approach based on hand-crafted features performing in real-time, even without GPU requirements. Furthermore, we present a realistic driving setup to capture a dataset of continuous finger gestures, which includes more than 2,800 instances on untrimmed videos covering safety driving requirements. With this dataset, our both approaches can run at 53 fps and 28 fps on GPU and CPU, respectively, around 13 fps faster than previous works, while achieving better performance (at least 5% higher mean tIoU).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linya发布了新的文献求助10
刚刚
英吉利25发布了新的文献求助10
刚刚
刚刚
1秒前
善学以致用应助玛卡巴卡采纳,获得10
1秒前
斯文的迎松完成签到,获得积分10
1秒前
tigerxhz发布了新的文献求助50
2秒前
3秒前
Yasing发布了新的文献求助10
3秒前
阿元发布了新的文献求助10
3秒前
爆米花应助shirabuki采纳,获得10
3秒前
时尚友安完成签到,获得积分10
3秒前
Akim应助bingsu108采纳,获得10
3秒前
糕手发布了新的文献求助10
4秒前
4秒前
4秒前
prisfanstein完成签到,获得积分10
4秒前
天天快乐应助linya采纳,获得10
5秒前
量子星尘发布了新的文献求助50
5秒前
6秒前
行者发布了新的文献求助10
6秒前
超人不会飞完成签到 ,获得积分10
6秒前
6秒前
张泸尹完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
浮游应助娇气的天亦采纳,获得10
9秒前
tigerxhz完成签到,获得积分10
10秒前
LY发布了新的文献求助10
10秒前
Whisper-CCM发布了新的文献求助10
10秒前
wjx发布了新的文献求助10
11秒前
年糕完成签到,获得积分10
11秒前
隐形曼青应助prisfanstein采纳,获得10
11秒前
11秒前
12秒前
情怀应助糕手采纳,获得10
12秒前
12秒前
漂亮拳发布了新的文献求助10
12秒前
Vesta关注了科研通微信公众号
13秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238364
求助须知:如何正确求助?哪些是违规求助? 4405962
关于积分的说明 13712456
捐赠科研通 4274323
什么是DOI,文献DOI怎么找? 2345561
邀请新用户注册赠送积分活动 1342588
关于科研通互助平台的介绍 1300579