Continuous Finger Gesture Spotting and Recognition Based on Similarities Between Start and End Frames

定位 手势 计算机科学 手势识别 语音识别 人工智能 计算机视觉
作者
Gibran Benítez-García,Muhammad Haris,Yoshiyuki Tsuda,Norimichi Ukita
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 296-307 被引量:11
标识
DOI:10.1109/tits.2020.3010306
摘要

Touchless in-car devices controlled by single and continuous finger gestures can provide comfort and safety on driving while manipulating secondary devices. Recognition of finger gestures is a challenging task due to (i) similarities between gesture and non-gesture frames, and (ii) the difficulty in identifying the temporal boundaries of continuous gestures. In addition, (iii) the intraclass variability of gestures' duration is a critical issue for recognizing finger gestures intended to control in-car devices. To address difficulties (i) and (ii), we propose a gesture spotting method where continuous gestures are segmented by detecting boundary frames and evaluating hand similarities between the start and end boundaries of each gesture. Subsequently, we introduce a gesture recognition based on a temporal normalization of features extracted from the set of spotted frames, which overcomes difficulty (iii). This normalization enables the representation of any gesture with the same limited number of features. We ensure real-time performance by proposing an approach based on compact deep neural networks. Moreover, we demonstrate the effectiveness of our proposal with a second approach based on hand-crafted features performing in real-time, even without GPU requirements. Furthermore, we present a realistic driving setup to capture a dataset of continuous finger gestures, which includes more than 2,800 instances on untrimmed videos covering safety driving requirements. With this dataset, our both approaches can run at 53 fps and 28 fps on GPU and CPU, respectively, around 13 fps faster than previous works, while achieving better performance (at least 5% higher mean tIoU).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫成风发布了新的文献求助10
刚刚
隐形曼青应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
duanhuiyuan应助科研通管家采纳,获得10
1秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得30
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
wwww0wwww应助科研通管家采纳,获得10
2秒前
丰知然应助科研通管家采纳,获得10
2秒前
WWXWWX应助科研通管家采纳,获得10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
wwww0wwww应助科研通管家采纳,获得10
2秒前
2秒前
4秒前
4秒前
UU发布了新的文献求助10
4秒前
Fe_001完成签到 ,获得积分10
5秒前
Neon发布了新的文献求助10
6秒前
坤坤蹦蹦跳跳完成签到,获得积分10
6秒前
6秒前
6秒前
iptwang完成签到,获得积分10
6秒前
金阿垚在科研完成签到,获得积分10
7秒前
DAI完成签到,获得积分10
8秒前
李大椰完成签到,获得积分10
9秒前
10秒前
全悲发布了新的文献求助10
10秒前
10秒前
11秒前
passion完成签到,获得积分10
12秒前
zzz完成签到,获得积分10
14秒前
李大椰发布了新的文献求助10
15秒前
Orange应助追梦采纳,获得10
15秒前
16秒前
19秒前
无限无心完成签到,获得积分10
21秒前
21秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700