Continuous Finger Gesture Spotting and Recognition Based on Similarities Between Start and End Frames

定位 手势 计算机科学 手势识别 语音识别 人工智能 计算机视觉
作者
Gibran Benítez-García,Muhammad Haris,Yoshiyuki Tsuda,Norimichi Ukita
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 296-307 被引量:11
标识
DOI:10.1109/tits.2020.3010306
摘要

Touchless in-car devices controlled by single and continuous finger gestures can provide comfort and safety on driving while manipulating secondary devices. Recognition of finger gestures is a challenging task due to (i) similarities between gesture and non-gesture frames, and (ii) the difficulty in identifying the temporal boundaries of continuous gestures. In addition, (iii) the intraclass variability of gestures' duration is a critical issue for recognizing finger gestures intended to control in-car devices. To address difficulties (i) and (ii), we propose a gesture spotting method where continuous gestures are segmented by detecting boundary frames and evaluating hand similarities between the start and end boundaries of each gesture. Subsequently, we introduce a gesture recognition based on a temporal normalization of features extracted from the set of spotted frames, which overcomes difficulty (iii). This normalization enables the representation of any gesture with the same limited number of features. We ensure real-time performance by proposing an approach based on compact deep neural networks. Moreover, we demonstrate the effectiveness of our proposal with a second approach based on hand-crafted features performing in real-time, even without GPU requirements. Furthermore, we present a realistic driving setup to capture a dataset of continuous finger gestures, which includes more than 2,800 instances on untrimmed videos covering safety driving requirements. With this dataset, our both approaches can run at 53 fps and 28 fps on GPU and CPU, respectively, around 13 fps faster than previous works, while achieving better performance (at least 5% higher mean tIoU).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的香菇完成签到 ,获得积分10
1秒前
相忘江湖的小余完成签到,获得积分10
1秒前
科研同路人完成签到,获得积分0
2秒前
灵巧水蓝完成签到 ,获得积分10
3秒前
勤劳尔容完成签到,获得积分20
3秒前
落尘完成签到,获得积分10
3秒前
4秒前
4秒前
橙酒完成签到,获得积分10
4秒前
寒酥完成签到,获得积分10
5秒前
翰飞寰宇完成签到,获得积分10
5秒前
朱子完成签到,获得积分10
6秒前
YCH_mem发布了新的文献求助30
6秒前
山间风完成签到,获得积分10
6秒前
刘春霖完成签到 ,获得积分10
7秒前
daixan89完成签到 ,获得积分10
8秒前
8秒前
寯齆完成签到,获得积分10
8秒前
innovation266完成签到,获得积分10
8秒前
9秒前
嗨喽完成签到,获得积分10
9秒前
活泼蜡烛完成签到,获得积分10
9秒前
叶落孤城完成签到,获得积分10
9秒前
woshiwuziq完成签到 ,获得积分10
9秒前
沐沐汐完成签到 ,获得积分10
10秒前
Akim应助文献狂人采纳,获得10
10秒前
YeMa发布了新的文献求助10
11秒前
shea发布了新的文献求助10
11秒前
自觉一曲发布了新的文献求助10
12秒前
12秒前
慕青应助lling采纳,获得10
12秒前
foxbt完成签到,获得积分10
12秒前
13秒前
夏秀鑫完成签到,获得积分10
13秒前
123完成签到,获得积分10
13秒前
奋斗的大白菜完成签到,获得积分10
14秒前
熊儒恒完成签到,获得积分10
14秒前
14秒前
白江虎发布了新的文献求助10
15秒前
笑点低的凉面完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883