Continuous Finger Gesture Spotting and Recognition Based on Similarities Between Start and End Frames

定位 手势 计算机科学 手势识别 语音识别 人工智能 计算机视觉
作者
Gibran Benítez-García,Muhammad Haris,Yoshiyuki Tsuda,Norimichi Ukita
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 296-307 被引量:11
标识
DOI:10.1109/tits.2020.3010306
摘要

Touchless in-car devices controlled by single and continuous finger gestures can provide comfort and safety on driving while manipulating secondary devices. Recognition of finger gestures is a challenging task due to (i) similarities between gesture and non-gesture frames, and (ii) the difficulty in identifying the temporal boundaries of continuous gestures. In addition, (iii) the intraclass variability of gestures' duration is a critical issue for recognizing finger gestures intended to control in-car devices. To address difficulties (i) and (ii), we propose a gesture spotting method where continuous gestures are segmented by detecting boundary frames and evaluating hand similarities between the start and end boundaries of each gesture. Subsequently, we introduce a gesture recognition based on a temporal normalization of features extracted from the set of spotted frames, which overcomes difficulty (iii). This normalization enables the representation of any gesture with the same limited number of features. We ensure real-time performance by proposing an approach based on compact deep neural networks. Moreover, we demonstrate the effectiveness of our proposal with a second approach based on hand-crafted features performing in real-time, even without GPU requirements. Furthermore, we present a realistic driving setup to capture a dataset of continuous finger gestures, which includes more than 2,800 instances on untrimmed videos covering safety driving requirements. With this dataset, our both approaches can run at 53 fps and 28 fps on GPU and CPU, respectively, around 13 fps faster than previous works, while achieving better performance (at least 5% higher mean tIoU).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助何甜采纳,获得10
1秒前
香蕉沛蓝发布了新的文献求助10
1秒前
2秒前
2秒前
ximi完成签到 ,获得积分10
2秒前
dnn_完成签到,获得积分10
3秒前
殷2000发布了新的文献求助10
5秒前
Ava应助看文献了采纳,获得10
5秒前
6秒前
6秒前
喜悦音响发布了新的文献求助10
6秒前
7秒前
Yeteen发布了新的文献求助10
7秒前
星辰大海应助素心采纳,获得10
9秒前
dew应助王璐采纳,获得10
9秒前
10秒前
啦啦啦发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
1中蓝发布了新的文献求助10
12秒前
上官若男应助是拿铁吖采纳,获得10
12秒前
悠悠发布了新的文献求助30
12秒前
小阿飞完成签到,获得积分10
12秒前
15秒前
15秒前
华仔应助zoele采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
19秒前
19秒前
ying完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
香蕉觅云应助阿星捌采纳,获得10
24秒前
落后成仁完成签到,获得积分20
24秒前
24秒前
24秒前
zoele发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
归尘应助麦地娜采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535