Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach

新颖性 结构方程建模 背景(考古学) 抗性(生态学) 人工神经网络 移动支付 计算机科学 付款 人工智能 机器学习 心理学 万维网 社会心理学 生态学 生物 古生物学
作者
Lai-Ying Leong,Teck-Soon Hew,Keng‐Boon Ooi,June Wei
出处
期刊:International Journal of Information Management [Elsevier BV]
卷期号:51: 102047-102047 被引量:356
标识
DOI:10.1016/j.ijinfomgt.2019.102047
摘要

The advancement in mobile technology has enabled the application of the mobile wallet or m-wallet as an innovative payment method to substitute the traditional functions of the physical wallet. However, because of pro-innovation bias, scholars have a focus on the adoption of technology and very little attention has been given to the resistance of innovation, especially in the m-wallet context. This study addressed this absence by examining the inhibitors of m-wallet innovation adoption through the lens of innovation resistance theory (IRT). By applying a sophisticated two-staged structural equation modeling-artificial neural network (SEM-ANN) approach, we successfully extended the IRT by integrating socio-demographics and perceived novelty. The study has unveiled the noncompensatory and nonlinear relationships between the predictors and m-wallet resistance. Significant predictors from SEM analysis were taken as the ANN model’s input neurons. According to the normalized importance obtained from the multilayer perceptrons of the feed-forward-back-propagation ANN algorithm, we found significant effects of education, income, usage barrier, risk barrier, value barrier, tradition barrier, and perceived novelty on m-wallet innovation resistance. The ANN model can predict m-wallet innovation resistance with an accuracy of 76.4 %. We also discussed several new and useful theoretical and practical implications for reducing m-wallet innovation resistance among consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助天边采纳,获得10
刚刚
1秒前
JinFFyy完成签到,获得积分10
2秒前
3秒前
上官若男应助西瓜皮采纳,获得10
4秒前
小崔读研完成签到 ,获得积分10
5秒前
5秒前
无畏完成签到,获得积分10
5秒前
6秒前
星辰大海应助Wu采纳,获得10
6秒前
席红旗完成签到,获得积分10
7秒前
Akim应助老黑采纳,获得10
9秒前
10秒前
Hh发布了新的文献求助10
10秒前
王大壮完成签到,获得积分10
12秒前
大模型应助王359采纳,获得10
12秒前
14秒前
Hh完成签到,获得积分10
15秒前
壮观缘分完成签到,获得积分10
16秒前
科研通AI5应助小小怪采纳,获得10
19秒前
011_wasd发布了新的文献求助10
20秒前
Yange发布了新的文献求助20
20秒前
刁刁完成签到,获得积分20
21秒前
22秒前
23秒前
无奈的如柏完成签到,获得积分20
23秒前
jjx1005完成签到 ,获得积分10
24秒前
只要平凡发布了新的文献求助10
24秒前
25秒前
刁刁发布了新的文献求助10
26秒前
飞上天的皮蛋完成签到,获得积分10
28秒前
zho应助WDWK采纳,获得10
31秒前
31秒前
稳重的悟空完成签到 ,获得积分10
33秒前
jiangxiaoyu完成签到 ,获得积分10
35秒前
骅骝发布了新的文献求助10
36秒前
37秒前
38秒前
38秒前
鬼小妞nice完成签到 ,获得积分10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712