Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example

相间 电解质 材料科学 无机化学 化学工程 纳米技术 电极 物理化学 化学 工程类 遗传学 生物
作者
Tao Gao,Singyuk Hou,Khue Huynh,Fei Wang,Nico Eidson,Xiulin Fan,Fudong Han,Chao Luo,Minglei Mao,Xiaogang Li,Chunsheng Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:10 (17): 14767-14776 被引量:112
标识
DOI:10.1021/acsami.8b02425
摘要

Magnesium redox chemistry is a very appealing "beyond Li ion chemistry" for realizing high energy density batteries due to the high capacity, low reduction potential, and most importantly, highly reversible and dendrite-free Mg metal anode. However, the progress of rechargeable Mg batteries has been greatly hindered by shortage of electrolytes with wide stability window, high ionic conductivity, and good compatibility with cathode materials. Unlike solid electrolyte interphase on Li metal anode, surface film formed by electrolyte decomposition in Mg batteries was considered to block Mg ion transport and passivate Mg electrode. For this reason, the attention of the community has been mainly focusing on surface layer free electrolytes, while reductively unstable salts/solvents are barely considered, despite many of them possessing all the necessary properties for good electrolytes. Here, for the first time, we demonstrate that the surface film formed by electrolyte decomposition can function as a solid electrolyte interphase (SEI). Using Mg/S chemistry as a model system, the SEI formation mechanism on Mg metal anode was thoroughly examined using electrochemical methods and surface chemistry characterization techniques such as EDX and XPS. On the basis of these results, a comprehensive view of the Mg/electrolyte interface that unifies both the SEI mechanism and the passivation layer mechanism is proposed. This new picture of surface layer on Mg metal anode in Mg batteries not only revolutionizes current understanding of Mg/electrolyte interface but also opens new avenues for electrolyte development by uncovering the potential of those reductively unstable candidates through interface design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小月亮完成签到,获得积分10
刚刚
Sherlock发布了新的文献求助10
刚刚
孤独靖柏发布了新的文献求助10
刚刚
香蕉觅云应助小巧的乌采纳,获得10
刚刚
1秒前
英俊的铭应助ppboyindream采纳,获得10
1秒前
weiwei发布了新的文献求助10
1秒前
秋水发布了新的文献求助10
2秒前
2秒前
2秒前
paws完成签到,获得积分10
2秒前
科研通AI2S应助tamaco采纳,获得10
2秒前
3秒前
3秒前
turbo完成签到,获得积分10
4秒前
橙子陈发布了新的文献求助10
4秒前
子叶叶子完成签到,获得积分10
4秒前
4秒前
小冉完成签到,获得积分10
5秒前
小米发布了新的文献求助10
6秒前
6秒前
田20202021完成签到,获得积分10
6秒前
Www发布了新的文献求助10
6秒前
背后玉米发布了新的文献求助10
7秒前
7秒前
蓝璃完成签到,获得积分10
7秒前
香蕉秋寒完成签到,获得积分10
8秒前
韦映菡发布了新的文献求助10
8秒前
晚睡的芒果完成签到,获得积分10
8秒前
汉堡包应助GG采纳,获得10
10秒前
小冉发布了新的文献求助10
10秒前
神勇涫发布了新的文献求助10
10秒前
ppboyindream发布了新的文献求助10
11秒前
zj发布了新的文献求助10
12秒前
小夜发布了新的文献求助10
13秒前
14秒前
研友_VZG7GZ应助嘿嘿采纳,获得10
14秒前
wanci应助you采纳,获得10
14秒前
petli完成签到,获得积分10
14秒前
FashionBoy应助我能读懂文献采纳,获得10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169616
求助须知:如何正确求助?哪些是违规求助? 2820792
关于积分的说明 7932194
捐赠科研通 2481126
什么是DOI,文献DOI怎么找? 1321678
科研通“疑难数据库(出版商)”最低求助积分说明 633317
版权声明 602541