Random forests-based extreme learning machine ensemble for multi-regime time series prediction

极限学习机 计算机科学 一般化 随机森林 集合预报 集成学习 机器学习 系列(地层学) 人工智能 采样(信号处理) 时间序列 涡扇发动机 人工神经网络 数学 工程类 数学分析 古生物学 滤波器(信号处理) 汽车工程 生物 计算机视觉
作者
Lin Lin,Fang Wang,Xiaolong Xie,Shisheng Zhong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:83: 164-176 被引量:107
标识
DOI:10.1016/j.eswa.2017.04.013
摘要

Accurate and timely predicting values of performance parameters are currently strongly needed for important complex equipment in engineering. In time series prediction, two problems are urgent to be solved. One problem is how to achieve the accuracy, stability and efficiency together, and the other is how to handle time series with multiple regimes. To solve these two problems, random forests-based extreme learning machine ensemble model and a novel multi-regime approach are proposed respectively, and these two approaches can be integrated to achieve better performance. First, the extreme learning machine (ELM) is used in the proposed model because of its efficiency. Then the regularized ELM and ensemble learning strategy are used to improve generalization performance and prediction accuracy. The bootstrap sampling technique is used to generate training sample sets for multiple base-level ELM models, and then the random forests (RF) model is used as the combiner to aggregate these ELM models to achieve more accurate and stable performance. Next, based on the specific properties of turbofan engine time series, a multi-regime approach is proposed to handle it. Regimes are first separated, then the proposed RF-based ELM ensemble model is used to learn models of all regimes, individually, and last, all the learned regime models are aggregated to predict performance parameter at the future timestamp. The proposed RF-based ELM ensemble model and multi-regime approaches are evaluated by using NN3 time series and NASA turbofan engine time series, and then the proposed model is applied to the exhaust gas temperature prediction of CFM engine. The results demonstrate that the proposed RF-based ELM ensemble model and multi-regime approach can be accurate, stable and efficient in predicting multi-regime time series, and it can be robust against overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou完成签到,获得积分10
刚刚
小马发布了新的文献求助20
刚刚
lyyyy发布了新的文献求助10
刚刚
小吴发布了新的文献求助10
1秒前
一又二分之一完成签到,获得积分10
2秒前
小二郎应助VDC采纳,获得10
2秒前
科研通AI2S应助乐观期待采纳,获得10
4秒前
66666发布了新的文献求助10
4秒前
非我完成签到 ,获得积分10
5秒前
流流124141完成签到,获得积分10
5秒前
一个可爱的人完成签到 ,获得积分10
7秒前
8秒前
英俊的铭应助Focus_BG采纳,获得10
9秒前
10秒前
一一完成签到,获得积分10
11秒前
1233完成签到,获得积分10
11秒前
66完成签到,获得积分10
14秒前
orixero应助果果采纳,获得10
15秒前
高翔发布了新的文献求助10
15秒前
纯银Whisky应助拼搏惜金采纳,获得30
16秒前
16秒前
19秒前
酸菜鱼火锅完成签到,获得积分10
19秒前
爆米花应助舟舟采纳,获得10
20秒前
21秒前
沉默关注了科研通微信公众号
22秒前
bkagyin应助拼搏惜金采纳,获得10
22秒前
22秒前
Liu完成签到,获得积分10
23秒前
super chan发布了新的文献求助10
24秒前
勤奋鑫鹏发布了新的文献求助10
24秒前
xmyang完成签到,获得积分10
25秒前
圣甲虫完成签到 ,获得积分10
25秒前
25秒前
情怀应助咕噜咕噜采纳,获得10
25秒前
李明发布了新的文献求助10
25秒前
迅速如波发布了新的文献求助10
26秒前
aikanwenxian发布了新的文献求助10
26秒前
26秒前
文文发布了新的文献求助10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461273
求助须知:如何正确求助?哪些是违规求助? 3054977
关于积分的说明 9045885
捐赠科研通 2744911
什么是DOI,文献DOI怎么找? 1505727
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233