Multi-objective sparrow search algorithm: A novel algorithm for solving complex multi-objective optimisation problems

算法 计算机科学 数学优化 拥挤 熵(时间箭头) 人口 分类 数学 物理 人口学 量子力学 神经科学 社会学 生物
作者
Bin Li,Honglei Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118414-118414 被引量:48
标识
DOI:10.1016/j.eswa.2022.118414
摘要

• A novel multi-objective sparrow search algorithm (MOSSA) is proposed. • 2 k crowding-distance entropy is proposed to maintain the diversity. • The formulas of updating positions and adaptive parameters are modified. • The optimal strategy of the positions is added to MOSSA. This study proposes a multi-objective sparrow search algorithm (MOSSA) based on a 2 k crowding-distance entropy and the optimal strategy of the positions to solve complex multi-objective optimisation problems (MOPs) using the excellent performance of the sparrow search algorithm (SSA). A fast non-dominated sorting approach is incorporated to permit SSA to solve MOPs. To maintain the evenness and spread of the Pareto solution set obtained in each run, a 2 k crowding-distance entropy is proposed to measure the diversity of the solution set. Modified formulas for updating positions and additional adaptive parameters can improve the global search ability of MOSSA. The position archive of the population is introduced to realise the optimal strategy of the positions. This strategy ensures that the positions of the population in each generation are optimal, which significantly improves the performance of MOSSA. MOSSA is compared with three well-known algorithms using a set of complex unconstrained test problems and a complex constrained engineering optimisation problem. This study explores the effect of the 2 k crowding-distance entropy and crowding distance on maintaining diversity. The impact of the k in 2 k crowding-distance entropy on the performance of MOSSA is analysed. The experimental results demonstrate that MOSSA exhibits competitive performance in solving complex MOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助大块采纳,获得30
刚刚
1秒前
FashionBoy应助绿水杯采纳,获得10
1秒前
4444l完成签到,获得积分10
2秒前
2秒前
烟花应助大胆的书白采纳,获得10
2秒前
呐呐呐发布了新的文献求助10
2秒前
张星星发布了新的文献求助10
4秒前
搞科研的静静完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
彳亍1117应助王大可采纳,获得10
6秒前
华仔应助厚朴大师采纳,获得10
6秒前
Avery完成签到 ,获得积分10
7秒前
8秒前
科目三应助嘻嘻采纳,获得10
8秒前
vee完成签到,获得积分10
8秒前
9秒前
桐桐应助小五采纳,获得10
10秒前
嗷嗷嗷啊发布了新的文献求助10
10秒前
lucas发布了新的文献求助10
10秒前
搜集达人应助粥粥采纳,获得10
10秒前
Auston_zhong应助呐呐呐采纳,获得10
10秒前
笑点低歌曲完成签到,获得积分10
10秒前
11秒前
4444l发布了新的文献求助10
11秒前
学术垃圾制造者完成签到,获得积分10
11秒前
11秒前
露噜噜发布了新的文献求助10
11秒前
12秒前
GXS完成签到,获得积分10
13秒前
科研通AI5应助紧张的黑猫采纳,获得10
14秒前
南昌黑人发布了新的文献求助10
14秒前
NexusExplorer应助Jiang湫采纳,获得10
14秒前
张星星完成签到,获得积分10
14秒前
minus发布了新的文献求助50
15秒前
huangqqk发布了新的文献求助10
15秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702336
求助须知:如何正确求助?哪些是违规求助? 3252249
关于积分的说明 9878392
捐赠科研通 2964282
什么是DOI,文献DOI怎么找? 1625586
邀请新用户注册赠送积分活动 770101
科研通“疑难数据库(出版商)”最低求助积分说明 742762