Update on Renal Cell Carcinoma Diagnosis with Novel Imaging Approaches

医学 肾细胞癌 放射科 清除单元格 磁共振成像 肾透明细胞癌 无线电技术 医学影像学 医学物理学 病理
作者
Marie‐France Bellin,Catarina Valente,Omar Bekdache,Florian Maxwell,Cristina Balasa,Alexia Savignac,Olivier Meyrignac
出处
期刊:Cancers [MDPI AG]
卷期号:16 (10): 1926-1926 被引量:2
标识
DOI:10.3390/cancers16101926
摘要

This review highlights recent advances in renal cell carcinoma (RCC) imaging. It begins with dual-energy computed tomography (DECT), which has demonstrated a high diagnostic accuracy in the evaluation of renal masses. Several studies have suggested the potential benefits of iodine quantification, particularly for distinguishing low-attenuation, true enhancing solid masses from hyperdense cysts. By determining whether or not a renal mass is present, DECT could avoid the need for additional imaging studies, thereby reducing healthcare costs. DECT can also provide virtual unenhanced images, helping to reduce radiation exposure. The review then provides an update focusing on the advantages of multiparametric magnetic resonance (MR) imaging performance in the histological subtyping of RCC and in the differentiation of benign from malignant renal masses. A proposed standardized stepwise reading of images helps to identify clear cell RCC and papillary RCC with a high accuracy. Contrast-enhanced ultrasound may represent a promising diagnostic tool for the characterization of solid and cystic renal masses. Several combined pharmaceutical imaging strategies using both sestamibi and PSMA offer new opportunities in the diagnosis and staging of RCC, but their role in risk stratification needs to be evaluated. Although radiomics and tumor texture analysis are hampered by poor reproducibility and need standardization, they show promise in identifying new biomarkers for predicting tumor histology, clinical outcomes, overall survival, and the response to therapy. They have a wide range of potential applications but are still in the research phase. Artificial intelligence (AI) has shown encouraging results in tumor classification, grade, and prognosis. It is expected to play an important role in assessing the treatment response and advancing personalized medicine. The review then focuses on recently updated algorithms and guidelines. The Bosniak classification version 2019 incorporates MRI, precisely defines previously vague imaging terms, and allows a greater proportion of masses to be placed in lower-risk classes. Recent studies have reported an improved specificity of the higher-risk categories and better inter-reader agreement. The clear cell likelihood score, which adds standardization to the characterization of solid renal masses on MRI, has been validated in recent studies with high interobserver agreement. Finally, the review discusses the key imaging implications of the 2017 AUA guidelines for renal masses and localized renal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
此话当真完成签到,获得积分10
刚刚
刚刚
1秒前
上帝发誓完成签到,获得积分10
1秒前
2秒前
wyy发布了新的文献求助10
2秒前
科研小白完成签到,获得积分10
2秒前
3秒前
羊羊羊发布了新的文献求助10
4秒前
开心就吃猕猴桃完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
5秒前
mm发布了新的文献求助10
5秒前
面向杂志编论文完成签到,获得积分0
6秒前
6秒前
6秒前
shh发布了新的文献求助10
7秒前
云端发布了新的文献求助10
7秒前
8秒前
JamesPei应助任性的蝴蝶采纳,获得10
8秒前
JiegeSCI发布了新的文献求助10
8秒前
小新发布了新的文献求助10
8秒前
8秒前
yufanhui应助xcc采纳,获得10
9秒前
芒果干完成签到,获得积分20
9秒前
9秒前
10秒前
Cary完成签到,获得积分10
11秒前
小狐狸发布了新的文献求助10
11秒前
12秒前
打打应助123采纳,获得10
12秒前
金榕完成签到,获得积分10
12秒前
子心发布了新的文献求助10
13秒前
芒果干发布了新的文献求助10
13秒前
标致的背包完成签到,获得积分10
13秒前
14秒前
BEST完成签到 ,获得积分10
14秒前
moshushan520发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845