Renal tumor segmentation, visualization, and segmentation confidence using ensembles of neural networks in patients undergoing surgical resection

分割 医学 置信区间 放射科 神经组阅片室 人工智能 内科学 计算机科学 神经学 精神科
作者
Sophie Bachanek,Paul Wuerzberg,Lorenz Biggemann,Tanja Yani Janssen,Manuel Nietert,Joachim Lotz,Philip Zeuschner,Alexander Maßmann,Annemarie Uhlig,Johannes Uhlig
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-024-11026-6
摘要

Abstract Objectives To develop an automatic segmentation model for solid renal tumors on contrast-enhanced CTs and to visualize segmentation with associated confidence to promote clinical applicability. Materials and methods The training dataset included solid renal tumor patients from two tertiary centers undergoing surgical resection and receiving CT in the corticomedullary or nephrogenic contrast media (CM) phase. Manual tumor segmentation was performed on all axial CT slices serving as reference standard for automatic segmentations. Independent testing was performed on the publicly available KiTS 2019 dataset. Ensembles of neural networks (ENN, DeepLabV3) were used for automatic renal tumor segmentation, and their performance was quantified with DICE score. ENN average foreground entropy measured segmentation confidence (binary: successful segmentation with DICE score > 0.8 versus inadequate segmentation ≤ 0.8). Results N = 639/ n = 210 patients were included in the training and independent test dataset. Datasets were comparable regarding age and sex ( p > 0.05), while renal tumors in the training dataset were larger and more frequently benign ( p < 0.01). In the internal test dataset, the ENN model yielded a median DICE score = 0.84 (IQR: 0.62–0.97, corticomedullary) and 0.86 (IQR: 0.77–0.96, nephrogenic CM phase), and the segmentation confidence an AUC = 0.89 (sensitivity = 0.86; specificity = 0.77). In the independent test dataset, the ENN model achieved a median DICE score = 0.84 (IQR: 0.71–0.97, corticomedullary CM phase); and segmentation confidence an accuracy = 0.84 (sensitivity = 0.86 and specificity = 0.81). ENN segmentations were visualized with color-coded voxelwise tumor probabilities and thresholds superimposed on clinical CT images. Conclusions ENN-based renal tumor segmentation robustly performs in external test data and might aid in renal tumor classification and treatment planning. Clinical relevance statement Ensembles of neural networks (ENN) models could automatically segment renal tumors on routine CTs, enabling and standardizing downstream image analyses and treatment planning. Providing confidence measures and segmentation overlays on images can lower the threshold for clinical ENN implementation. Key Points Ensembles of neural networks (ENN) segmentation is visualized by color-coded voxelwise tumor probabilities and thresholds . ENN provided a high segmentation accuracy in internal testing and in an independent external test dataset . ENN models provide measures of segmentation confidence which can robustly discriminate between successful and inadequate segmentations .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦咔嘞完成签到,获得积分10
1秒前
1秒前
称心网络完成签到,获得积分10
1秒前
小二郎应助DYW采纳,获得10
1秒前
SEMA3C发布了新的文献求助10
2秒前
科研小天才完成签到,获得积分10
2秒前
啦啦啦完成签到,获得积分10
2秒前
点墨完成签到 ,获得积分10
2秒前
123HJJJKJJKJK应助肚子圆圆的采纳,获得10
3秒前
Sandy完成签到,获得积分10
3秒前
kingwill应助dd采纳,获得20
3秒前
zyt发布了新的文献求助10
3秒前
3秒前
溪鱼完成签到,获得积分10
4秒前
万能图书馆应助malenia采纳,获得10
4秒前
晨曦完成签到,获得积分10
4秒前
阿木发布了新的文献求助10
4秒前
wanci应助我要快点毕业采纳,获得10
4秒前
5秒前
李小明发布了新的文献求助30
5秒前
5秒前
NZH发布了新的文献求助10
5秒前
LSJ完成签到,获得积分20
6秒前
科研通AI5应助否定之否定采纳,获得10
6秒前
7秒前
安好发布了新的文献求助10
7秒前
A0完成签到,获得积分10
7秒前
g_hathaway发布了新的文献求助10
8秒前
9秒前
jianxin完成签到,获得积分10
10秒前
10秒前
Aseaxin完成签到 ,获得积分10
10秒前
爆米花应助小北采纳,获得10
10秒前
10秒前
feiCheung发布了新的文献求助10
10秒前
11秒前
LyAnZ发布了新的文献求助10
11秒前
11秒前
漂亮的孤风完成签到,获得积分10
11秒前
王曼曼完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556918
求助须知:如何正确求助?哪些是违规求助? 3132301
关于积分的说明 9396543
捐赠科研通 2832443
什么是DOI,文献DOI怎么找? 1556762
邀请新用户注册赠送积分活动 726897
科研通“疑难数据库(出版商)”最低求助积分说明 716131