材料科学
晶界
腐蚀
微观结构
冶金
等温过程
合金
镁合金
降水
粒度
电偶腐蚀
热力学
物理
气象学
作者
Zhi Chen,Huizhong Li,Xiaopeng Liang,Hui Tao,Yixuan Che,Ming‐Chun Zhao
标识
DOI:10.1016/j.jmrt.2023.09.097
摘要
The impacts of non-isothermal aging treatment (NIA) on the microstructure and corrosion resistance of WE43 magnesium alloy was examined through weight loss experiments, hydrogen evolution experiments, electrochemical assessments, three-dimensional microscopy, potential surface measurements, and microscopic analyses. The NIA modified the WE43 magnesium alloy by decreasing the precipitation-free zone (PFZ) and disrupting the continuous arrangement of precipitates along the grain boundaries. The Volta potential at the grain boundaries of NAI specimens (with respect to the matrix) was -35mV, significantly lower than -110mV in T6 specimens. Due to the effect of micro-galvanic corrosion between the grain boundaries and the grain interiors couple, T6 specimens exhibited significant grain boundary corrosion. They showed grooves with a maximum depth of about 13μm and a width of about 30μm after the immersion test. The NAI specimens have shallower grooves at the grain boundary. The corrosion rate of the three specimens was ranked as T4> T6> NAI.
科研通智能强力驱动
Strongly Powered by AbleSci AI