锂(药物)
原子层沉积
降级(电信)
阴极
电解质
无定形固体
化学工程
图层(电子)
材料科学
沉积(地质)
表层
电池(电)
化学
纳米技术
结晶学
电极
物理化学
医学
电信
古生物学
内分泌学
沉积物
计算机科学
工程类
生物
功率(物理)
物理
量子力学
作者
Huijuan Guo,Yipeng Sun,Yang Zhao,Gui‐Xian Liu,Yuexian Song,Jing Wan,Kecheng Jiang,Yu‐Guo Guo,Xueliang Sun,Rui Wen
标识
DOI:10.1002/anie.202211626
摘要
Abstract Single‐crystalline Ni‐rich cathode (SC‐NCM) has attracted increasing interest owing to its greater capacity retention in advanced solid‐state lithium batteries (SSLBs), while suffers from severe interfacial instability during cycling. Here, via atomic layer deposition, Li 3 PO 4 is introduced to coat SC‐NCM (L‐NCM), to suppress undesired side reaction and enhance interfacial stability. The dynamic degradation and surface regulation of SC‐NCM are investigated inside a working SSLB by in situ atomic force microscopy (AFM). We directly observe the uneven cathode electrolyte interphase (CEI) and surface defects on pristine SC‐NCM particle. Remarkably, the formed amorphous LiF‐rich CEI on L‐NCM maintains its initial structure upon cycling, and thus endows the battery with improved cycling stability and excellent rate capability. Such on‐site tracking provides deep insights into surface mechanism and structure–reactivity correlation of SC‐NCM, and thus benefits the optimizations of SSLBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI