算法
成像体模
机器学习
物理
人工智能
计算机科学
光学
作者
Jie Deng,Haiyang Niu,Junwei Hu,Mingyi Chen,Lars Stixrude
出处
期刊:Physical review
日期:2023-02-13
卷期号:107 (6)
被引量:20
标识
DOI:10.1103/physrevb.107.064103
摘要
The melting temperature of MgSiO${}_{3}$ is crucial in controlling the interior structures and dynamics of Earth and super-Earths. Here, the authors propose an iterative learning scheme that combines enhanced sampling, feature selection, and deep learning, and develop a unified machine learning potential of $a\phantom{\rule{0}{0ex}}b$ $i\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}o$ quality. This is valid over a wide pressure-temperature range to determine the melting temperature of MgSiO${}_{3}$. Modeling based on these results shows that heat flux from the core to the mantle is favorable of generating magnetic fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI