Using deep learning and explainable artificial intelligence to assess the severity of gastroesophageal reflux disease according to the Los Angeles Classification System

格尔德 医学 回流 分级(工程) 疾病 内窥镜检查 人工智能 胃肠病学 内科学 计算机科学 土木工程 工程类
作者
Zhenyang Ge,Bowen Wang,Jiuyang Chang,Zequn Yu,Zhenyuan Zhou,Jing Zhang,Zhijun Duan
出处
期刊:Scandinavian Journal of Gastroenterology [Informa]
卷期号:58 (6): 596-604 被引量:12
标识
DOI:10.1080/00365521.2022.2163185
摘要

Gastroesophageal reflux disease (GERD) is a complex disease with a high worldwide prevalence. The Los Angeles classification (LA-grade) system is meaningful for assessing the endoscopic severity of GERD. Deep learning (DL) methods have been widely used in the field of endoscopy. However, few DL-assisted researches have concentrated on the diagnosis of GERD. This study is the first to develop a five-category classification DL model based on the LA-grade using explainable artificial intelligence (XAI).A total of 2081 endoscopic images were used for the development of a DL model, and the classification accuracy of the models and endoscopists with different levels of experience was compared.Some mainstream DL models were utilized, of which DenseNet-121 outperformed. The area under the curve (AUC) of the DenseNet-121 was 0.968, and its classification accuracy (86.7%) was significantly higher than that of junior (71.5%) and experienced (77.4%) endoscopists. An XAI evaluation was also performed to explore the perception consistency between the DL model and endoscopists, which showed meaningful results for real-world applications.The DL model showed a potential in improving the accuracy of endoscopists in LA-grading of GERD, and it has noticeable clinical application prospects and is worthy of further promotion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助路宝采纳,获得10
1秒前
1秒前
浮游应助舒心的向卉采纳,获得10
1秒前
liamddd完成签到 ,获得积分10
1秒前
星辰大海应助传统的雨文采纳,获得10
1秒前
1秒前
2秒前
jjjwln发布了新的文献求助10
3秒前
Van完成签到,获得积分10
3秒前
Ruia发布了新的文献求助10
4秒前
5秒前
赘婿应助li采纳,获得10
5秒前
6秒前
自觉问芙发布了新的文献求助10
7秒前
spume发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
不安青牛应助科研通管家采纳,获得10
11秒前
干净寻冬应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
11秒前
路宝发布了新的文献求助10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
干净寻冬应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
852应助科研通管家采纳,获得10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
12秒前
壮壮学长发布了新的文献求助20
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620905
求助须知:如何正确求助?哪些是违规求助? 4705599
关于积分的说明 14932648
捐赠科研通 4763944
什么是DOI,文献DOI怎么找? 2551370
邀请新用户注册赠送积分活动 1513876
关于科研通互助平台的介绍 1474715