Using deep learning and explainable artificial intelligence to assess the severity of gastroesophageal reflux disease according to the Los Angeles Classification System

格尔德 医学 回流 分级(工程) 疾病 内窥镜检查 人工智能 胃肠病学 内科学 计算机科学 土木工程 工程类
作者
Zhenyang Ge,Bowen Wang,Jiuyang Chang,Zequn Yu,Zhenyuan Zhou,Jing Zhang,Zhijun Duan
出处
期刊:Scandinavian Journal of Gastroenterology [Taylor & Francis]
卷期号:58 (6): 596-604 被引量:12
标识
DOI:10.1080/00365521.2022.2163185
摘要

Gastroesophageal reflux disease (GERD) is a complex disease with a high worldwide prevalence. The Los Angeles classification (LA-grade) system is meaningful for assessing the endoscopic severity of GERD. Deep learning (DL) methods have been widely used in the field of endoscopy. However, few DL-assisted researches have concentrated on the diagnosis of GERD. This study is the first to develop a five-category classification DL model based on the LA-grade using explainable artificial intelligence (XAI).A total of 2081 endoscopic images were used for the development of a DL model, and the classification accuracy of the models and endoscopists with different levels of experience was compared.Some mainstream DL models were utilized, of which DenseNet-121 outperformed. The area under the curve (AUC) of the DenseNet-121 was 0.968, and its classification accuracy (86.7%) was significantly higher than that of junior (71.5%) and experienced (77.4%) endoscopists. An XAI evaluation was also performed to explore the perception consistency between the DL model and endoscopists, which showed meaningful results for real-world applications.The DL model showed a potential in improving the accuracy of endoscopists in LA-grading of GERD, and it has noticeable clinical application prospects and is worthy of further promotion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flz完成签到,获得积分10
1秒前
受伤11发布了新的文献求助10
1秒前
1秒前
2秒前
nfmhh完成签到 ,获得积分10
2秒前
3秒前
受伤妙菱完成签到,获得积分10
3秒前
浮游应助碧蓝帆布鞋采纳,获得10
4秒前
脑洞疼应助蛋挞采纳,获得10
4秒前
时米米米发布了新的文献求助10
5秒前
典雅问寒完成签到,获得积分0
6秒前
英姑应助XIGUA采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
执着凌波发布了新的文献求助10
8秒前
祁夫人完成签到,获得积分10
8秒前
9秒前
杨子墨发布了新的文献求助10
9秒前
wangjing11发布了新的文献求助10
9秒前
星辰大海应助这里是阿龙采纳,获得10
9秒前
hhyctb完成签到,获得积分10
9秒前
mqq完成签到 ,获得积分10
10秒前
小罗完成签到,获得积分10
10秒前
赘婿应助xx采纳,获得10
11秒前
SciGPT应助毅诚菌采纳,获得10
11秒前
12秒前
12秒前
zxping发布了新的文献求助10
13秒前
小二郎应助受伤妙菱采纳,获得10
14秒前
Luna完成签到,获得积分10
14秒前
huoyunli完成签到,获得积分10
14秒前
15秒前
Weiweiweixiao完成签到,获得积分10
16秒前
huoyunli发布了新的文献求助10
17秒前
打打应助满意的蜜蜂采纳,获得10
17秒前
dalong完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
22秒前
HarUkii发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908385
求助须知:如何正确求助?哪些是违规求助? 4185042
关于积分的说明 12996504
捐赠科研通 3951722
什么是DOI,文献DOI怎么找? 2167149
邀请新用户注册赠送积分活动 1185586
关于科研通互助平台的介绍 1092179