Using deep learning and explainable artificial intelligence to assess the severity of gastroesophageal reflux disease according to the Los Angeles Classification System

格尔德 医学 回流 分级(工程) 疾病 内窥镜检查 人工智能 胃肠病学 内科学 计算机科学 土木工程 工程类
作者
Zhenyang Ge,Bowen Wang,Jiuyang Chang,Zequn Yu,Zhenyuan Zhou,Jing Zhang,Zhijun Duan
出处
期刊:Scandinavian Journal of Gastroenterology [Informa]
卷期号:58 (6): 596-604 被引量:12
标识
DOI:10.1080/00365521.2022.2163185
摘要

Gastroesophageal reflux disease (GERD) is a complex disease with a high worldwide prevalence. The Los Angeles classification (LA-grade) system is meaningful for assessing the endoscopic severity of GERD. Deep learning (DL) methods have been widely used in the field of endoscopy. However, few DL-assisted researches have concentrated on the diagnosis of GERD. This study is the first to develop a five-category classification DL model based on the LA-grade using explainable artificial intelligence (XAI).A total of 2081 endoscopic images were used for the development of a DL model, and the classification accuracy of the models and endoscopists with different levels of experience was compared.Some mainstream DL models were utilized, of which DenseNet-121 outperformed. The area under the curve (AUC) of the DenseNet-121 was 0.968, and its classification accuracy (86.7%) was significantly higher than that of junior (71.5%) and experienced (77.4%) endoscopists. An XAI evaluation was also performed to explore the perception consistency between the DL model and endoscopists, which showed meaningful results for real-world applications.The DL model showed a potential in improving the accuracy of endoscopists in LA-grading of GERD, and it has noticeable clinical application prospects and is worthy of further promotion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
4秒前
Jenny发布了新的文献求助10
5秒前
fzh发布了新的文献求助10
8秒前
8秒前
9秒前
12秒前
KYTYYDS发布了新的文献求助10
13秒前
HanluMa完成签到 ,获得积分10
13秒前
fzh完成签到,获得积分10
17秒前
Jenny完成签到,获得积分10
19秒前
伟立完成签到,获得积分10
19秒前
26秒前
27秒前
然12138完成签到 ,获得积分10
27秒前
香蕉觅云应助SnownS采纳,获得10
27秒前
川荣李奈完成签到 ,获得积分10
31秒前
xinbowey发布了新的文献求助10
31秒前
火星上向珊完成签到,获得积分10
34秒前
36秒前
柳条儿完成签到,获得积分10
36秒前
如意幻枫完成签到,获得积分10
40秒前
41秒前
41秒前
渔婆发布了新的文献求助10
42秒前
44秒前
风趣的泥猴桃完成签到 ,获得积分10
45秒前
45秒前
zgsjymysmyy发布了新的文献求助30
46秒前
fuchao完成签到,获得积分10
46秒前
牧谷发布了新的文献求助10
47秒前
好吃的火龙果完成签到 ,获得积分10
48秒前
天边发布了新的文献求助10
49秒前
东方越彬发布了新的文献求助10
50秒前
赘婿应助sunny采纳,获得10
50秒前
50秒前
50秒前
SnownS完成签到,获得积分10
51秒前
123123发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566