Comprehensive exploration of programmed cell death landscape in lung adenocarcinoma combining multi-omic analysis and experimental verification

腺癌 计算机科学 计算生物学 生物 癌症 遗传学
作者
Peng Yu,Leyang Xiao,Kaibo Hu,Jitao Ling,Yixuan Chen,Ruiqi Liang,xinyu liu,Deju Zhang,Yuzhen Liu,T.-C. Weng,Hongyang Jiang,Jing Zhang,Wuming Wang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-87982-w
摘要

The mortality and therapeutic failure in lung adenocarcinoma (LUAD) are mainly resulted from the wide metastasis and chemotherapy resistance. Up to now, accurate and stable predictive prognostic indicator for revealing the progress and novel therapeutic strategies of LUAD is infrequent, nonetheless. Diversified programmed cell death (PCD) has been widely confirmed that participated in the occurrence and development of various malignant tumors, respectively. In this research, we integrated fourteen types of PCD, bulk multi-omic data from TCGA-LUAD and other cohorts in gene expression omnibus (GEO) and clinical LUAD patients to develop our analysis. Consequently, pivotal fourteen PCD genes, especially CAMP, CDK5R1, CTSW, DAPK2, GAB2, GAPDH, GATA2, HGF, MAPT, NAPSA, NUPR1, PIK3CG, PLA2G3, and SLC7A11, were utilized to establish the prognostic signature, namely cell death index (CDI). The validation in several external cohorts indicated that CDI can be regarded as a potential risk factor of LUAD patients. Combined with other common clinical information, a nomogram with potential predictive ability was constructed. Besides, according to the CDI signature, the tumor microenvironment (TME) and sensitivity to some potential chemotherapeutic drugs were further and deeply explored. Notably, verification and functional experiments further demonstrated the remarkable correlation between CDI and unfold protein response. Given all the above, a novel CDI gene signature was indicated to predict the prognosis and exploit precision therapeutic strategies of LUAD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AYN发布了新的文献求助10
1秒前
SYLH应助无言采纳,获得10
2秒前
nn发布了新的文献求助10
2秒前
houruibut发布了新的文献求助10
2秒前
3秒前
liuxian发布了新的文献求助10
4秒前
若雨凌风应助罗渲童采纳,获得10
5秒前
若雨凌风应助罗渲童采纳,获得10
5秒前
笑笑完成签到,获得积分10
5秒前
ayun1002发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
wuhu完成签到,获得积分20
7秒前
7秒前
常常完成签到,获得积分10
7秒前
cctv_x完成签到 ,获得积分10
7秒前
FashionBoy应助speedness采纳,获得10
8秒前
houruibut完成签到,获得积分10
8秒前
9秒前
9秒前
nn完成签到,获得积分10
9秒前
xshuang发布了新的文献求助10
10秒前
常常发布了新的文献求助10
10秒前
10秒前
11秒前
dy发布了新的文献求助10
12秒前
婵羽发布了新的文献求助10
12秒前
JamesPei应助缓慢珠采纳,获得10
12秒前
天天快乐应助文艺的白翠采纳,获得10
12秒前
wuhu发布了新的文献求助10
12秒前
乐乐应助ABS采纳,获得10
13秒前
阿钉发布了新的文献求助10
13秒前
13秒前
13秒前
wuxiaoshu发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469748
求助须知:如何正确求助?哪些是违规求助? 3062929
关于积分的说明 9080652
捐赠科研通 2753160
什么是DOI,文献DOI怎么找? 1510771
邀请新用户注册赠送积分活动 698056
科研通“疑难数据库(出版商)”最低求助积分说明 698018