有界函数
涡度
数学
数学分析
欧拉方程
伽辽金法
傅里叶变换
欧拉公式
物理
涡流
非线性系统
机械
量子力学
作者
Luigi C. Berselli,Stefano Spirito
标识
DOI:10.1142/s0219891624400010
摘要
In this paper we prove the uniform-in-time [Formula: see text] convergence for the Fourier–Galerkin approximation to Yudovich solutions of the 2D Euler equations. Precisely, we show that both the approximating velocity and the approximating vorticity converge strongly in [Formula: see text]. Moreover, for the convergence of the velocity we provide an explicit rate of convergence. The proofs are based on a relative entropy approach and the Osgood lemma. Related results under different assumptions on the vorticity are also proved.
科研通智能强力驱动
Strongly Powered by AbleSci AI