Can Students Make STEM Progress With the Large Language Models (LLMs)? An Empirical Study of LLMs Integration Within Middle School Science and Engineering Practice

数学教育 科学教育 包裹体(矿物) 实证研究 心理学 社会心理学 数学 统计
作者
Qing Guo,Junwen Zhen,Fenglin Wu,Yanting He,Cuilan Qiao
出处
期刊:Journal of Educational Computing Research [SAGE]
标识
DOI:10.1177/07356331241312365
摘要

The rapid development of large language models (LLMs) presented opportunities for the transformation of science and STEM education. Research on LLMs was in the exploratory phase, characterized by discussions and observations rather than empirical investigations. This study presented a framework for incorporating LLMs into Science and Engineering Practice (SEP), utilizing a case study on submarine construction, followed by a four-week quasi-experimental validation. The research employed conditional cluster sampling, selecting two homogeneous natural classes from a middle school in China to serve as the experimental and control groups. The key experimental variable was the inclusion of LLMs in the SEP project. Various validated and self-developed assessment tools were used to measure students’ STEM learning outcomes. Statistical analyses, including pre- and post-test paired comparisons within classes and ANCOVA for between-class differences, were performed to evaluate the effects of LLM integration. The results showed that students participating in SEP integrated with LLMs significantly improved their mastery of scientific knowledge, attitudes towards science, perceived usefulness of technology, understanding of engineering, computational thinking skills, and problem-solving abilities. In contrast, students participating in traditional SEP exhibited weaker knowledge acquisition, differences in understanding engineering concepts, and lack of development in computational thinking and problem-solving skills. This study was a pioneering effort in integrating LLMs into science education and provided a framework and case reference for the deeper application of LLMs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
uil发布了新的文献求助10
1秒前
碧蓝的紫翠完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
超帅的怡完成签到,获得积分10
4秒前
4秒前
漂亮飞凤发布了新的文献求助10
4秒前
orixero应助番茄牛肉粒采纳,获得10
4秒前
翠花完成签到 ,获得积分10
6秒前
yesiyan应助zyt采纳,获得10
6秒前
yulong完成签到 ,获得积分10
6秒前
田様应助leila采纳,获得10
6秒前
胡雅琴发布了新的文献求助30
7秒前
小罗不饿发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
华仔应助狗蛋采纳,获得10
9秒前
9秒前
QQ糖完成签到 ,获得积分10
10秒前
11秒前
Ryuichi完成签到 ,获得积分10
11秒前
lou发布了新的文献求助10
11秒前
倩倩发布了新的文献求助10
12秒前
W哇发布了新的文献求助10
12秒前
徐来福完成签到,获得积分10
12秒前
13秒前
14秒前
小赐完成签到,获得积分10
14秒前
烟花应助wsy采纳,获得10
15秒前
潸潸发布了新的文献求助10
15秒前
15秒前
月牙儿完成签到,获得积分10
15秒前
科研通AI5应助徐来福采纳,获得20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525382
求助须知:如何正确求助?哪些是违规求助? 3105949
关于积分的说明 9277636
捐赠科研通 2803349
什么是DOI,文献DOI怎么找? 1538588
邀请新用户注册赠送积分活动 716333
科研通“疑难数据库(出版商)”最低求助积分说明 709380