Robust self management classification via sparse representation based discriminative model for mild cognitive impairment associated with diabetes mellitus

判别式 糖尿病 认知障碍 代表(政治) 计算机科学 人工智能 认知 机器学习 医学 模式识别(心理学) 精神科 内分泌学 政治学 政治 法学
作者
Yun-xian Wang,Rong Lin,Hao Liang,Yuan-jiao Yan,Jixing Liang,Ming-feng Chen,Hong Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-82665-4
摘要

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e. self-management) have a significant impact on the development of their condition. Thus, the inclusion and discrimination of subsequent interventions according to their self-management is an urgent issue. A Sparse-representation-based Discriminative Classification model (SDC) is proposed in this paper to correctly classify MCI-DM patients based on their self-management ability. Specifically, an L1-minimization sparse representation model, an efficient machine learning model, is used to obtain the sparse histogram that encodes the identity of the test sample. Then, the coefficient of determination $$\:{R}^{2}$$ is adopted to determine the category based on the sparse histogram of the test sample. Extensive experiments on the self-management data of DM-MCI are conducted to verify the effectiveness of SDC. The experimental results show that the accuracy $$\:\mathcal{A}$$ , precision $$\:\mathcal{P}$$ , recall $$\:\mathcal{R}$$ , and F1-score $$\:\mathcal{F}$$ are 94.3%, 95.0%, 94.3%, and 94.5%, respectively, demonstrating the excellent performance of SDC. The model used in this study has high accuracy and can be used for subgroup discrimination. The use of the sparse representation model in this study has supportive implications for the inclusion of research subjects in clinical intervention strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
matrixu完成签到,获得积分10
刚刚
情怀应助zou采纳,获得10
1秒前
高xl完成签到,获得积分10
1秒前
精明书雁发布了新的文献求助10
1秒前
1秒前
涵涵发布了新的文献求助10
1秒前
小丸子博士完成签到 ,获得积分10
2秒前
陈某某发布了新的文献求助10
2秒前
可爱的函函应助Vermouth采纳,获得10
3秒前
无花果应助迅速芷容采纳,获得10
3秒前
科研通AI6应助李杨采纳,获得10
3秒前
陈xxxxxxxxxx发布了新的文献求助10
3秒前
3秒前
完美世界应助英勇白莲采纳,获得30
3秒前
wyx1111发布了新的文献求助50
3秒前
aa完成签到,获得积分10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
根酱发布了新的文献求助10
4秒前
不乖把头打歪完成签到,获得积分20
5秒前
zyy完成签到,获得积分10
5秒前
wsy完成签到,获得积分10
5秒前
5秒前
超级洋葱发布了新的文献求助10
6秒前
云舒发布了新的文献求助10
6秒前
书院十四完成签到,获得积分10
6秒前
hy发布了新的文献求助10
6秒前
6秒前
勤奋夏兰完成签到,获得积分10
8秒前
8秒前
8秒前
李爱国应助桑尼号采纳,获得10
8秒前
顾矜应助苹果颖采纳,获得10
8秒前
9秒前
9秒前
烂漫的苑睐完成签到,获得积分10
10秒前
迅速芷容完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125