Robust self management classification via sparse representation based discriminative model for mild cognitive impairment associated with diabetes mellitus

判别式 糖尿病 认知障碍 代表(政治) 计算机科学 人工智能 认知 机器学习 医学 模式识别(心理学) 精神科 内分泌学 政治 政治学 法学
作者
Yun-xian Wang,Rong Lin,Hao Liang,Yuan-jiao Yan,Jixing Liang,Ming-feng Chen,Hong Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-82665-4
摘要

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e. self-management) have a significant impact on the development of their condition. Thus, the inclusion and discrimination of subsequent interventions according to their self-management is an urgent issue. A Sparse-representation-based Discriminative Classification model (SDC) is proposed in this paper to correctly classify MCI-DM patients based on their self-management ability. Specifically, an L1-minimization sparse representation model, an efficient machine learning model, is used to obtain the sparse histogram that encodes the identity of the test sample. Then, the coefficient of determination $$\:{R}^{2}$$ is adopted to determine the category based on the sparse histogram of the test sample. Extensive experiments on the self-management data of DM-MCI are conducted to verify the effectiveness of SDC. The experimental results show that the accuracy $$\:\mathcal{A}$$ , precision $$\:\mathcal{P}$$ , recall $$\:\mathcal{R}$$ , and F1-score $$\:\mathcal{F}$$ are 94.3%, 95.0%, 94.3%, and 94.5%, respectively, demonstrating the excellent performance of SDC. The model used in this study has high accuracy and can be used for subgroup discrimination. The use of the sparse representation model in this study has supportive implications for the inclusion of research subjects in clinical intervention strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flyabc完成签到,获得积分10
1秒前
qp发布了新的文献求助10
1秒前
香蕉觅云应助刘鹏宇采纳,获得10
2秒前
可爱的函函应助沉静哲瀚采纳,获得10
2秒前
2秒前
2秒前
乖乖完成签到,获得积分20
2秒前
3秒前
3秒前
小豆芽儿完成签到,获得积分20
3秒前
布鲁鲁完成签到,获得积分10
5秒前
偷猪剑客完成签到,获得积分10
5秒前
SQ发布了新的文献求助10
5秒前
6秒前
李健应助强健的月饼采纳,获得30
6秒前
陶1122完成签到,获得积分10
6秒前
6秒前
changaipei完成签到,获得积分10
7秒前
7秒前
李子完成签到,获得积分10
7秒前
8秒前
8秒前
共享精神应助YAOYAO采纳,获得10
8秒前
qp完成签到,获得积分10
8秒前
9秒前
咕噜咕噜完成签到,获得积分20
10秒前
HEIKU应助kiska采纳,获得10
10秒前
10秒前
单薄茗完成签到,获得积分10
10秒前
10秒前
刘鹏宇完成签到,获得积分10
11秒前
danrushui777完成签到,获得积分10
11秒前
慕青应助李子采纳,获得10
11秒前
无心的怜烟完成签到,获得积分10
11秒前
拼搏的沅完成签到,获得积分10
12秒前
123完成签到,获得积分10
12秒前
11111111111完成签到,获得积分10
12秒前
清辉月凝发布了新的文献求助10
12秒前
天天快乐应助无不破哉采纳,获得10
12秒前
夏末完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678