Underwater-YCC: Underwater Target Detection Optimization Algorithm Based on YOLOv7

水下 计算机科学 人工智能 算法 计算机视觉 模糊逻辑 模式识别(心理学) 地质学 海洋学
作者
Xiao Chen,Moucun Yuan,Qi Yang,Hongxun Yao,Haiyan Wang
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (5): 995-995 被引量:11
标识
DOI:10.3390/jmse11050995
摘要

Underwater target detection using optical images is a challenging yet promising area that has witnessed significant progress. However, fuzzy distortions and irregular light absorption in the underwater environment often lead to image blur and color bias, particularly for small targets. Consequently, existing methods have yet to yield satisfactory results. To address this issue, we propose the Underwater-YCC optimization algorithm based on You Only Look Once (YOLO) v7 to enhance the accuracy of detecting small targets underwater. Our algorithm utilizes the Convolutional Block Attention Module (CBAM) to obtain fine-grained semantic information by selecting an optimal position through multiple experiments. Furthermore, we employ the Conv2Former as the Neck component of the network for underwater blurred images. Finally, we apply the Wise-IoU, which is effective in improving detection accuracy by assigning multiple weights between high- and low-quality images. Our experiments on the URPC2020 dataset demonstrate that the Underwater-YCC algorithm achieves a mean Average Precision (mAP) of up to 87.16% in complex underwater environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助卓哥采纳,获得10
1秒前
mysci完成签到,获得积分10
4秒前
5秒前
Quzhengkai发布了新的文献求助10
6秒前
6秒前
7秒前
落寞晓灵完成签到,获得积分10
7秒前
ORAzzz应助翠翠采纳,获得20
8秒前
zoe完成签到,获得积分10
8秒前
习习应助学术小白采纳,获得10
8秒前
9秒前
10秒前
tianny关注了科研通微信公众号
11秒前
11秒前
CO2发布了新的文献求助10
11秒前
桐桐应助zhangscience采纳,获得10
12秒前
求助发布了新的文献求助10
13秒前
buno应助zoe采纳,获得10
14秒前
junzilan发布了新的文献求助10
14秒前
14秒前
细品岁月完成签到 ,获得积分10
14秒前
细心书蕾完成签到 ,获得积分10
15秒前
无花果应助l11x29采纳,获得10
17秒前
17秒前
老詹头发布了新的文献求助10
17秒前
思源应助叫滚滚采纳,获得10
18秒前
19秒前
刘歌完成签到 ,获得积分10
19秒前
阿巡完成签到,获得积分10
19秒前
Chen完成签到,获得积分10
21秒前
LSH970829发布了新的文献求助10
21秒前
哈哈哈完成签到 ,获得积分10
22秒前
汤姆完成签到,获得积分10
22秒前
24秒前
24秒前
翠翠完成签到,获得积分10
25秒前
25秒前
LSH970829完成签到,获得积分10
26秒前
Lyg完成签到,获得积分20
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808