CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism

成熟度 鉴定(生物学) 计算机科学 盈利能力指数 质量(理念) 人工智能 特征(语言学) 产品(数学) 模式识别(心理学) 数学 园艺 经济 成熟 哲学 语言学 植物 几何学 财务 认识论 生物
作者
Seetharam Nagesh Appe,G. Arulselvi,Balaji GN
出处
期刊:PeerJ [PeerJ]
卷期号:9: e1463-e1463 被引量:9
标识
DOI:10.7717/peerj-cs.1463
摘要

Background One of the key elements in maintaining the consistent marketing of tomato fruit is tomato quality. Since ripeness is the most important factor for tomato quality in the viewpoint of consumers, determining the stages of tomato ripeness is a fundamental industrial concern with regard to tomato production to obtain a high quality product. Since tomatoes are one of the most important crops in the world, automatic ripeness evaluation of tomatoes is a significant study topic as it may prove beneficial in ensuring an optimal production of high-quality product, increasing profitability. This article explores and categorises the various maturity/ripeness phases to propose an automated multi-class classification approach for tomato ripeness testing and evaluation. Methods Object detection is the critical component in a wide variety of computer vision problems and applications such as manufacturing, agriculture, medicine, and autonomous driving. Due to the tomato fruits’ complex identification background, texture disruption, and partial occlusion, the classic deep learning object detection approach (YOLO) has a poor rate of success in detecting tomato fruits. To figure out these issues, this article proposes an improved YOLOv5 tomato detection algorithm. The proposed algorithm CAM-YOLO uses YOLOv5 for feature extraction, target identification and Convolutional Block Attention Module (CBAM). The CBAM is added to the CAM-YOLO to focus the model on improving accuracy. Finally, non-maximum suppression and distance intersection over union (DIoU) are applied to enhance the identification of overlapping objects in the image. Results Several images from the dataset were chosen for testing to assess the model’s performance, and the detection performance of the CAM-YOLO and standard YOLOv5 models under various conditions was compared. The experimental results affirms that CAM-YOLO algorithm is efficient in detecting the overlapped and small tomatoes with an average precision of 88.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cen发布了新的文献求助10
1秒前
照照完成签到,获得积分10
1秒前
郑先生完成签到 ,获得积分10
2秒前
kytlnj完成签到 ,获得积分0
3秒前
yesiDo完成签到,获得积分10
4秒前
何晓俊完成签到,获得积分10
5秒前
gj2221423发布了新的文献求助10
6秒前
最最最最幸运的人完成签到,获得积分10
7秒前
cynical完成签到 ,获得积分10
7秒前
胖胖猪完成签到,获得积分10
7秒前
7秒前
霸气雪珍完成签到,获得积分10
8秒前
小欣完成签到,获得积分20
8秒前
qianqian发布了新的文献求助10
10秒前
王哪跑12完成签到,获得积分10
11秒前
风中小懒虫完成签到,获得积分10
11秒前
文艺鞋垫完成签到,获得积分10
11秒前
华东小可爱完成签到,获得积分10
11秒前
cen完成签到,获得积分10
14秒前
16秒前
淡如水完成签到 ,获得积分10
16秒前
zl完成签到,获得积分10
17秒前
Hello应助gj2221423采纳,获得10
19秒前
tramp应助聆琳采纳,获得20
19秒前
迁小yan完成签到 ,获得积分10
19秒前
20秒前
任性的芷蕾完成签到,获得积分10
20秒前
21秒前
情怀应助五五采纳,获得10
22秒前
le完成签到 ,获得积分10
24秒前
25秒前
2799完成签到,获得积分10
25秒前
lielizabeth完成签到 ,获得积分0
25秒前
26秒前
26秒前
小豪发布了新的文献求助10
26秒前
微义完成签到,获得积分10
28秒前
28秒前
帅气的小兔子完成签到 ,获得积分10
30秒前
一次就好发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011