CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism

成熟度 鉴定(生物学) 计算机科学 盈利能力指数 质量(理念) 人工智能 特征(语言学) 产品(数学) 模式识别(心理学) 数学 园艺 经济 成熟 哲学 语言学 植物 几何学 财务 认识论 生物
作者
Seetharam Nagesh Appe,G. Arulselvi,Balaji GN
出处
期刊:PeerJ [PeerJ]
卷期号:9: e1463-e1463 被引量:9
标识
DOI:10.7717/peerj-cs.1463
摘要

Background One of the key elements in maintaining the consistent marketing of tomato fruit is tomato quality. Since ripeness is the most important factor for tomato quality in the viewpoint of consumers, determining the stages of tomato ripeness is a fundamental industrial concern with regard to tomato production to obtain a high quality product. Since tomatoes are one of the most important crops in the world, automatic ripeness evaluation of tomatoes is a significant study topic as it may prove beneficial in ensuring an optimal production of high-quality product, increasing profitability. This article explores and categorises the various maturity/ripeness phases to propose an automated multi-class classification approach for tomato ripeness testing and evaluation. Methods Object detection is the critical component in a wide variety of computer vision problems and applications such as manufacturing, agriculture, medicine, and autonomous driving. Due to the tomato fruits’ complex identification background, texture disruption, and partial occlusion, the classic deep learning object detection approach (YOLO) has a poor rate of success in detecting tomato fruits. To figure out these issues, this article proposes an improved YOLOv5 tomato detection algorithm. The proposed algorithm CAM-YOLO uses YOLOv5 for feature extraction, target identification and Convolutional Block Attention Module (CBAM). The CBAM is added to the CAM-YOLO to focus the model on improving accuracy. Finally, non-maximum suppression and distance intersection over union (DIoU) are applied to enhance the identification of overlapping objects in the image. Results Several images from the dataset were chosen for testing to assess the model’s performance, and the detection performance of the CAM-YOLO and standard YOLOv5 models under various conditions was compared. The experimental results affirms that CAM-YOLO algorithm is efficient in detecting the overlapped and small tomatoes with an average precision of 88.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
1秒前
李健的小迷弟应助yili采纳,获得10
1秒前
L.完成签到,获得积分10
1秒前
木子发布了新的文献求助10
1秒前
威武诺言发布了新的文献求助10
1秒前
科研通AI5应助孙二二采纳,获得10
1秒前
1秒前
英姑应助rookie_b0采纳,获得10
2秒前
毛慢慢发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
kangkang完成签到,获得积分10
3秒前
丘比特应助东风第一枝采纳,获得10
3秒前
3秒前
丰知然应助normankasimodo采纳,获得10
4秒前
黑森林发布了新的文献求助30
4秒前
hu970发布了新的文献求助10
4秒前
4秒前
俭朴夜雪发布了新的文献求助30
4秒前
林上草应助lzj001983采纳,获得10
4秒前
小白完成签到,获得积分20
4秒前
药疯了完成签到,获得积分20
5秒前
桐桐应助123采纳,获得10
5秒前
风中寄云发布了新的文献求助10
5秒前
buuyoo发布了新的文献求助10
5秒前
zjudxn发布了新的文献求助10
5秒前
春夏爱科研完成签到,获得积分10
6秒前
飞翔的西红柿完成签到,获得积分10
6秒前
xzy完成签到,获得积分10
6秒前
L.发布了新的文献求助20
7秒前
Verdigris完成签到,获得积分10
8秒前
cindy完成签到,获得积分10
8秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
8秒前
金色热浪完成签到 ,获得积分10
8秒前
快去读文献完成签到,获得积分20
8秒前
斯文静曼完成签到,获得积分10
8秒前
8秒前
8秒前
拼搏思卉关注了科研通微信公众号
9秒前
9秒前
liudiqiu应助酷酷的起眸采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759