CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism

成熟度 鉴定(生物学) 计算机科学 盈利能力指数 质量(理念) 人工智能 特征(语言学) 产品(数学) 模式识别(心理学) 数学 园艺 经济 成熟 哲学 语言学 植物 几何学 财务 认识论 生物
作者
Seetharam Nagesh Appe,G. Arulselvi,Balaji GN
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:9: e1463-e1463 被引量:9
标识
DOI:10.7717/peerj-cs.1463
摘要

Background One of the key elements in maintaining the consistent marketing of tomato fruit is tomato quality. Since ripeness is the most important factor for tomato quality in the viewpoint of consumers, determining the stages of tomato ripeness is a fundamental industrial concern with regard to tomato production to obtain a high quality product. Since tomatoes are one of the most important crops in the world, automatic ripeness evaluation of tomatoes is a significant study topic as it may prove beneficial in ensuring an optimal production of high-quality product, increasing profitability. This article explores and categorises the various maturity/ripeness phases to propose an automated multi-class classification approach for tomato ripeness testing and evaluation. Methods Object detection is the critical component in a wide variety of computer vision problems and applications such as manufacturing, agriculture, medicine, and autonomous driving. Due to the tomato fruits’ complex identification background, texture disruption, and partial occlusion, the classic deep learning object detection approach (YOLO) has a poor rate of success in detecting tomato fruits. To figure out these issues, this article proposes an improved YOLOv5 tomato detection algorithm. The proposed algorithm CAM-YOLO uses YOLOv5 for feature extraction, target identification and Convolutional Block Attention Module (CBAM). The CBAM is added to the CAM-YOLO to focus the model on improving accuracy. Finally, non-maximum suppression and distance intersection over union (DIoU) are applied to enhance the identification of overlapping objects in the image. Results Several images from the dataset were chosen for testing to assess the model’s performance, and the detection performance of the CAM-YOLO and standard YOLOv5 models under various conditions was compared. The experimental results affirms that CAM-YOLO algorithm is efficient in detecting the overlapped and small tomatoes with an average precision of 88.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助mm采纳,获得10
刚刚
小马甲应助dsfsd采纳,获得10
刚刚
1秒前
HenryXiao发布了新的文献求助10
1秒前
天天快乐应助花生采纳,获得10
1秒前
2秒前
金不换完成签到,获得积分10
2秒前
2秒前
hxl发布了新的文献求助30
2秒前
3秒前
VelesAlexei完成签到,获得积分10
3秒前
田様应助小粉红wow~~~采纳,获得10
4秒前
4秒前
猪猪hero发布了新的文献求助10
4秒前
hdh发布了新的文献求助10
5秒前
coke发布了新的文献求助10
5秒前
硬膜之下完成签到,获得积分10
5秒前
zyzhnu完成签到,获得积分10
5秒前
大力凡儿完成签到 ,获得积分10
6秒前
笑羽发布了新的文献求助10
6秒前
6秒前
Ryuki完成签到 ,获得积分10
8秒前
8秒前
毛毛发布了新的文献求助10
8秒前
9秒前
9秒前
Jiayi完成签到,获得积分10
9秒前
9秒前
10秒前
酷波er应助巴拉巴拉巴采纳,获得10
11秒前
11秒前
11秒前
SWL发布了新的文献求助10
11秒前
12秒前
今后应助张文静采纳,获得10
12秒前
13秒前
nino完成签到,获得积分10
13秒前
niat完成签到,获得积分10
14秒前
14秒前
ddk六发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650