DeepAK-IoT: An effective deep learning model for cyberattack detection in IoT networks

块(置换群论) 计算机科学 物联网 代表(政治) 一般化 人工智能 残余物 深度学习 GSM演进的增强数据速率 特征(语言学) 卷积神经网络 边缘设备 边缘计算 计算机安全 算法 数学 哲学 数学分析 操作系统 政治 云计算 法学 语言学 政治学 几何学
作者
Weiping Ding,Mohamed Abdel‐Basset,Reda M. Mohamed
出处
期刊:Information Sciences [Elsevier]
卷期号:634: 157-171 被引量:8
标识
DOI:10.1016/j.ins.2023.03.052
摘要

Our daily lives have been profoundly changed over the past few years owing to the growing presence of the Internet of Things (IoT). Importantly, IoT makes our lives more convenient, simpler, and more efficient; however, gadgets are vulnerable to a wide variety of cyberattacks due to the lack of robust security mechanisms and hardware security support. This paper presents an alternative deep learning model known as DeepAK-IoT to detect cyberattacks against IoT devices. DeepAK-IoT uses three blocks as its foundation: the residual-based-spatial representation (RSR) block, the temporal representation block (TRB), and the detection block (DB). The RSR block uses five residual blocks to extract a feature representation from the output of the preceding layer. The four convolutional layers are connected in parallel with a skip connection within each block to avoid vanishing or exploding gradients. Then, the second block uses the extracted spatial representation to learn a temporal representation to detect cyber threats. The final block decides how to classify the input record. We evaluated the accuracy and generalization ability of DeepAK-IoT using three well-known public datasets: TON-IoT, Edge-IIoTset, and UNSW-NB15. The proposed model was compared to three state-of-the-art deep learning models to demonstrate its effectiveness in detecting cyber threats in IoT systems. According to the experimental results, DeepAK-IoT was found to be a powerful alternative model for managing cyber threats in IoT networks, as it provided 90.57% accuracy for TON IoT, 94.96% for Edge-IIoTset, and 98.41% for UNSW NB15.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
1秒前
大个应助山丘采纳,获得10
1秒前
2秒前
lalala发布了新的文献求助10
2秒前
昏睡的铅笔完成签到,获得积分10
2秒前
阳光发布了新的文献求助10
3秒前
传奇3应助抗氧剂采纳,获得10
3秒前
3秒前
4秒前
易安发布了新的文献求助10
4秒前
扬嘉諵发布了新的文献求助10
4秒前
5秒前
正直凛发布了新的文献求助10
5秒前
欲望被鬼应助元谷雪采纳,获得10
6秒前
香蕉觅云应助风吹的冷冽采纳,获得10
6秒前
6秒前
空空完成签到 ,获得积分10
6秒前
6秒前
小笨拙发布了新的文献求助10
7秒前
uiwh发布了新的文献求助10
8秒前
椰子壳完成签到,获得积分20
8秒前
9秒前
hzy发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
文静雨筠完成签到,获得积分20
10秒前
10秒前
优秀发带完成签到,获得积分10
10秒前
Jin发布了新的文献求助10
11秒前
11秒前
传奇3应助甄遥采纳,获得10
11秒前
11秒前
体贴翠丝发布了新的文献求助10
11秒前
11秒前
Jasper应助谨慎爆米花采纳,获得20
11秒前
噢耶发布了新的文献求助10
12秒前
S.S.N完成签到 ,获得积分10
12秒前
12秒前
13秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
The Oxford Handbook of Transcranial Stimulation (the second edition) 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3437754
求助须知:如何正确求助?哪些是违规求助? 3034816
关于积分的说明 8956013
捐赠科研通 2722784
什么是DOI,文献DOI怎么找? 1493558
科研通“疑难数据库(出版商)”最低求助积分说明 690286
邀请新用户注册赠送积分活动 686662