Machine learning reveals serum myristic acid, palmitic acid and heptanoylcarnitine as biomarkers of coronary artery disease risk in patients with type 2 diabetes mellitus

肉豆蔻酸 2型糖尿病 棕榈酸 医学 内科学 糖尿病 冠状动脉疾病 胃肠病学 内分泌学 脂肪酸 生物化学 生物
作者
Ting Hu,Wen Zhang,Feifei Han,Rui Zhao,Hongchuan Liu,Zhuoling An
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:556: 117852-117852
标识
DOI:10.1016/j.cca.2024.117852
摘要

Coronary heart disease (CHD) is the most important complication of type 2 diabetes mellitus (T2DM) and the leading cause of death. Identifying the risk of CHD in T2DM patients is important for early clinical intervention.A total of 213 participants, including 81 healthy controls (HCs), 69 T2DM patients and 63 T2DM patients complicated with CHD were recruited in this study. Serum metabolomics were conducted by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Demographic information and clinical laboratory test results were also collected.Metabolic phenotypes were significantly altered among HC, T2DM and T2DM-CHD. Acylcarnitines were the most disturbed metabolites between T2DM patients and HCs. Lower levels of bile acids and higher levels of fatty acids in serum were closely associated with CHD risk in T2DM patients. Artificial neural network model was constructed for the discrimination of T2DM and T2DM complicated with CHD based on myristic acid, palmitic acid and heptanoylcarnitine, with accuracy larger than 0.95 in both training set and testing set.Altogether, these findings suggest that myristic acid, palmitic acid and heptanoylcarnitine have a good prospect for the warning of CHD complications in T2DM patients, and are superior to traditional lipid, blood glucose and blood pressure indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cjq完成签到,获得积分10
刚刚
刚刚
小马甲应助123采纳,获得10
1秒前
Long完成签到,获得积分10
1秒前
2秒前
晚生四时完成签到,获得积分10
2秒前
2秒前
2秒前
长情洙发布了新的文献求助10
2秒前
天真的宝马完成签到,获得积分10
2秒前
3秒前
肉松小贝完成签到,获得积分10
3秒前
4秒前
4秒前
HEIKU应助yangyangyang采纳,获得10
4秒前
Esfuerzo完成签到,获得积分10
4秒前
科研通AI5应助安静的安寒采纳,获得10
5秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
5秒前
royan2完成签到,获得积分10
5秒前
阿勒泰完成签到,获得积分10
5秒前
小于爱科研完成签到,获得积分10
5秒前
5秒前
zkc完成签到,获得积分10
5秒前
5秒前
luo发布了新的文献求助30
5秒前
雾蓝发布了新的文献求助10
5秒前
6秒前
zhang发布了新的文献求助10
6秒前
佳佳发布了新的文献求助10
7秒前
royan2发布了新的文献求助10
7秒前
7秒前
zkc发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
沐沐君完成签到,获得积分10
8秒前
nancyzhy完成签到,获得积分10
8秒前
当时明月在完成签到,获得积分0
8秒前
共享精神应助无情念之采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759