已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LLMs, Embeddings and Indexing Pipelines to Enable Natural Language Searching on Upstream Datasets

搜索引擎索引 计算机科学 上游(联网) 管道运输 自然语言 数据科学 情报检索 人工智能 计算机网络 工程类 环境工程
作者
James Lee Martin,M Nur Arif Zanuri,Muthu Kumar Sockalingam,Eric Andersen
标识
DOI:10.2523/iptc-23626-ea
摘要

Abstract Large Language Models (LLMs) are attracting an enormous amount of interest at the moment in many domains. Their general nature, and ability to "understand" natural language, has already stimulated multiple areas of research at our company. Here we successfully demonstrate a Natural Language querying system, which is able to search a large repository of unstructured exploration data. The system supports follow up querying on the returned results, plus automatic summarization of content. The system is integrated into our novel end-to-end data-mining platform, which continuously mines our unstructured exploration data for new changes and indexes the results. Important in our method are the enrichment processes that occur prior to use of the LLM. Our approach avoids usual "chunking" techniques, which in our experience results in inferior results, especially in the multiple domain areas of Exploration. By integrating our novel ontology-model AI in the enrichment of the initial Index, we drastically boost the performance of search resulting from the LLM steps. In order to perform the search, key parts of our unstructured data, plus the query itself, need to be transformed into a vector form. This is performed using the embedding feature of the LLM. For this work, we had around 500,000 embeddings to calculate. To improve performance these were indexed in a leading Analytics Engine as a vector object, allowing fast search via cosine or Euclidian similarity. A custom dashboard was made to allow fresh searches of the vector datastore to be returned for further analysis. Our current search time across 500,000 embeddings is under 20 milli-seconds. Our custom dashboard returns the top matches for further interrogation and analysis. This includes follow-up Natural Language question support on the returned matches for summarization tasks and other customised querying. Since our exploration-specific, ontology model is able to tag each piece of data with over 40 exploration-specific labels, we are able to cross-examine the LLM returned results with the tags. Agreement on a range of queries - ranging from targeted, highly specific questions to general, open-ended queries - was surprisingly good. Natural Language based querying of our unstructured data is opening a whole new approach to data discovery in our company. Tailoring it to the exploration domain has required specific domain expertise and a novel ontology-model be used to ensure relevant prompts and query results. Obtaining search results quickly has also required expertise and fine-tuning. Future directions include ingesting more data, scaling the support infrastructure and further capability enhancement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿兰发布了新的文献求助50
2秒前
卓涛完成签到,获得积分10
5秒前
7秒前
adkdad完成签到,获得积分10
10秒前
机智的芒果完成签到,获得积分10
12秒前
Vichhkwx发布了新的文献求助20
14秒前
ding应助搞学术太难了采纳,获得10
22秒前
Owen应助时光采纳,获得10
22秒前
23秒前
思有发布了新的文献求助10
27秒前
liiii关注了科研通微信公众号
27秒前
28秒前
zt1812431172完成签到 ,获得积分10
29秒前
JaneChen完成签到 ,获得积分10
34秒前
38秒前
39秒前
41秒前
41秒前
42秒前
郝好完成签到 ,获得积分10
43秒前
无花果应助Vichhkwx采纳,获得10
43秒前
纯真的血茗关注了科研通微信公众号
43秒前
45秒前
时光发布了新的文献求助10
45秒前
45秒前
于雷是我发布了新的文献求助10
47秒前
李爱国应助Grool采纳,获得10
47秒前
48秒前
liiii发布了新的文献求助10
48秒前
敏感的钢铁侠完成签到,获得积分10
52秒前
Laaaaaa完成签到 ,获得积分10
53秒前
欢喜冷之完成签到 ,获得积分20
55秒前
nianyu发布了新的文献求助10
56秒前
HEIKU应助XSY采纳,获得10
57秒前
搞学术太难了关注了科研通微信公众号
58秒前
1分钟前
YifanWang应助zkx采纳,获得30
1分钟前
思有完成签到,获得积分10
1分钟前
呼噜发布了新的文献求助10
1分钟前
学术办公室主任完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314227
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530722
捐赠科研通 2622271
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838