Predicting Adverse Events for Patients with Type-1 Diabetes Via Self-Supervised Learning

自编码 低血糖 水准点(测量) 计算机科学 人工智能 不利影响 机器学习 2型糖尿病 深度学习 糖尿病 医学 内科学 内分泌学 大地测量学 地理
作者
Xinzhe Zheng,Sijie Ji,Chenshu Wu
标识
DOI:10.1109/icassp48485.2024.10446832
摘要

Predicting blood glucose levels is fundamental for precise primary care of type-1 diabetes (T1D) patients. However, it is challenging to predict glucose levels accurately, not to mention the early alarm of adverse events (hyperglycemia and hypoglycemia), namely the minority class. In this paper, we propose BG-BERT, a novel self-supervised learning framework for blood glucose level prediction. In particular, BG-BERT incorporates masked autoencoder to capture rich contextual information of blood glucose records for accurate prediction. More specifically, SMOTE data augmentation and shrinkage loss are employed to effectively handle adverse events without discrimination. We evaluate BG-BERT on two benchmark datasets against two state-of-the-art base-line models. The experimental results highlight the significant improvements achieved by BG-BERT in glucose level prediction accuracy (measured by RMSE) and sensitivity to adverse events, with average lifting ratios of 9.5% and 44.9%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿牛完成签到,获得积分20
刚刚
1秒前
111111111发布了新的文献求助10
2秒前
2秒前
2秒前
龙华之士完成签到,获得积分10
3秒前
机智的青槐完成签到 ,获得积分10
4秒前
阿牛发布了新的文献求助10
4秒前
虚拟的凡波完成签到,获得积分10
4秒前
pinging应助离线采纳,获得10
4秒前
在水一方应助甜甜晓露采纳,获得10
4秒前
spurs17完成签到,获得积分10
5秒前
黎乐乐完成签到 ,获得积分10
5秒前
miao完成签到,获得积分10
5秒前
6秒前
小郭完成签到 ,获得积分10
6秒前
龙华之士发布了新的文献求助10
6秒前
smile完成签到,获得积分10
6秒前
斯文败类应助动听导师采纳,获得10
7秒前
7秒前
复杂曼梅发布了新的文献求助10
7秒前
迷糊完成签到,获得积分10
8秒前
8秒前
汉堡包应助Rrr采纳,获得10
9秒前
新的心跳发布了新的文献求助10
9秒前
NN应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得30
11秒前
shouyu29应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得60
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研小白应助科研通管家采纳,获得40
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808