Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection

模式识别(心理学) 计算机科学 特征选择 人工智能 特征提取 支持向量机 熵(时间箭头) 极限学习机 分类器(UML) 断层(地质) 振动 数据挖掘 机器学习 人工神经网络 物理 地震学 地质学 量子力学
作者
Xiaoan Yan,Minping Jia
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:163: 450-471 被引量:211
标识
DOI:10.1016/j.knosys.2018.09.004
摘要

Intelligent fault diagnosis of rotating machinery is essentially a pattern recognition problem. Meanwhile, effective feature extraction from the raw vibration signal is an important procedure for timely detection of mechanical health status and the assessment of fault recognition results. Therefore, to efficiently extract fault feature information and improve fault diagnosis accuracy, a novel fault diagnosis technique based on improved multiscale dispersion entropy (IMDE) and max-relevance min-redundancy (mRMR) is proposed in this paper. Firstly, the IMDE method is developed to capture multi-scale fault features from the collected original vibration signal, which can overcome the deficiencies of traditional multiscale entropy and improve the stability of the recently presented multiscale dispersion entropy (MDE). Then, the mRMR algorithm is utilized to select automatically the sensitive features from the candidate multi-scale features without any prior knowledge. Finally, the sensitive feature vector set after normalization treatment is inputted into the extreme learning machine (ELM) classifier to train the intelligent diagnosis model and provide fault diagnosis results. The validity of our proposed method is assessed through two experimental examples. The experimental results show that our proposed method works efficiently for identification of different fault conditions of mechanical components including rolling bearing and gearbox. Moreover, our proposed method gives better diagnosis results as compared to some existing approaches (e.g. MSE and MPE) when being utilized for fault condition classification. This research provides a new perspective for fault information extraction and fault classification of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yile完成签到,获得积分10
1秒前
忐忑的小玉完成签到,获得积分10
2秒前
2秒前
dmm完成签到 ,获得积分10
2秒前
无语的梦易完成签到,获得积分10
2秒前
鱿鱼炒黄瓜完成签到,获得积分10
2秒前
丿小智灬完成签到,获得积分10
3秒前
szbllc完成签到,获得积分10
3秒前
xiaobai完成签到,获得积分20
3秒前
wang发布了新的文献求助10
3秒前
方寸完成签到,获得积分10
4秒前
joinn发布了新的文献求助10
4秒前
4秒前
4秒前
Nanki发布了新的文献求助10
5秒前
ma完成签到,获得积分10
5秒前
两先生完成签到 ,获得积分10
6秒前
宴之敖者完成签到,获得积分10
6秒前
齐齐完成签到,获得积分10
7秒前
7秒前
zzmax完成签到,获得积分10
7秒前
7秒前
清秀颜演完成签到,获得积分10
8秒前
晶晶完成签到,获得积分10
8秒前
壮观的谷冬完成签到,获得积分10
8秒前
蓝刺完成签到,获得积分10
8秒前
hq6045x完成签到,获得积分10
8秒前
十六月夜完成签到,获得积分10
8秒前
虞小渔发布了新的文献求助10
9秒前
小米完成签到,获得积分10
9秒前
tans0008完成签到,获得积分10
9秒前
nater2ver完成签到,获得积分10
9秒前
霸气果汁完成签到,获得积分10
9秒前
phoebe发布了新的文献求助10
9秒前
9秒前
penzer完成签到 ,获得积分10
9秒前
勤劳的小牛蛙应助顾闭月采纳,获得10
10秒前
蓝桉完成签到,获得积分10
10秒前
terryok发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953576
求助须知:如何正确求助?哪些是违规求助? 3499159
关于积分的说明 11094348
捐赠科研通 3229748
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478