Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection

模式识别(心理学) 计算机科学 特征选择 人工智能 特征提取 支持向量机 熵(时间箭头) 极限学习机 分类器(UML) 断层(地质) 振动 数据挖掘 机器学习 人工神经网络 物理 地质学 量子力学 地震学
作者
Xiaoan Yan,Minping Jia
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:163: 450-471 被引量:211
标识
DOI:10.1016/j.knosys.2018.09.004
摘要

Intelligent fault diagnosis of rotating machinery is essentially a pattern recognition problem. Meanwhile, effective feature extraction from the raw vibration signal is an important procedure for timely detection of mechanical health status and the assessment of fault recognition results. Therefore, to efficiently extract fault feature information and improve fault diagnosis accuracy, a novel fault diagnosis technique based on improved multiscale dispersion entropy (IMDE) and max-relevance min-redundancy (mRMR) is proposed in this paper. Firstly, the IMDE method is developed to capture multi-scale fault features from the collected original vibration signal, which can overcome the deficiencies of traditional multiscale entropy and improve the stability of the recently presented multiscale dispersion entropy (MDE). Then, the mRMR algorithm is utilized to select automatically the sensitive features from the candidate multi-scale features without any prior knowledge. Finally, the sensitive feature vector set after normalization treatment is inputted into the extreme learning machine (ELM) classifier to train the intelligent diagnosis model and provide fault diagnosis results. The validity of our proposed method is assessed through two experimental examples. The experimental results show that our proposed method works efficiently for identification of different fault conditions of mechanical components including rolling bearing and gearbox. Moreover, our proposed method gives better diagnosis results as compared to some existing approaches (e.g. MSE and MPE) when being utilized for fault condition classification. This research provides a new perspective for fault information extraction and fault classification of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Khr1stINK采纳,获得10
刚刚
傲娇的凡旋应助小周采纳,获得10
1秒前
潇潇潇完成签到 ,获得积分10
1秒前
2秒前
英俊的铭应助XShu采纳,获得10
3秒前
Hello应助一只大肥猫采纳,获得10
4秒前
allyceacheng完成签到,获得积分10
4秒前
科研通AI5应助phd采纳,获得10
5秒前
5秒前
WTaMi完成签到 ,获得积分10
5秒前
zoe发布了新的文献求助10
5秒前
Owen应助无奈的酒窝采纳,获得10
6秒前
7秒前
9秒前
9秒前
9秒前
科研通AI5应助wangyanwxy采纳,获得10
10秒前
36456657应助豆dou采纳,获得10
10秒前
11秒前
11秒前
12秒前
buno应助jy采纳,获得10
13秒前
paparazzi221发布了新的文献求助10
14秒前
田生完成签到,获得积分10
14秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
14秒前
14秒前
爆米花应助towerman采纳,获得10
15秒前
羊笨笨完成签到 ,获得积分10
15秒前
16秒前
光亮芷天完成签到,获得积分10
16秒前
16秒前
17秒前
粗犷的问夏完成签到,获得积分10
18秒前
知行合一完成签到 ,获得积分10
19秒前
19秒前
20秒前
李爱国应助晨曦采纳,获得10
21秒前
0128lun发布了新的文献求助10
21秒前
phd发布了新的文献求助10
22秒前
君无名完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808