清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection

模式识别(心理学) 计算机科学 特征选择 人工智能 特征提取 支持向量机 熵(时间箭头) 极限学习机 分类器(UML) 断层(地质) 振动 数据挖掘 机器学习 人工神经网络 物理 地质学 量子力学 地震学
作者
Xiaoan Yan,Minping Jia
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:163: 450-471 被引量:211
标识
DOI:10.1016/j.knosys.2018.09.004
摘要

Intelligent fault diagnosis of rotating machinery is essentially a pattern recognition problem. Meanwhile, effective feature extraction from the raw vibration signal is an important procedure for timely detection of mechanical health status and the assessment of fault recognition results. Therefore, to efficiently extract fault feature information and improve fault diagnosis accuracy, a novel fault diagnosis technique based on improved multiscale dispersion entropy (IMDE) and max-relevance min-redundancy (mRMR) is proposed in this paper. Firstly, the IMDE method is developed to capture multi-scale fault features from the collected original vibration signal, which can overcome the deficiencies of traditional multiscale entropy and improve the stability of the recently presented multiscale dispersion entropy (MDE). Then, the mRMR algorithm is utilized to select automatically the sensitive features from the candidate multi-scale features without any prior knowledge. Finally, the sensitive feature vector set after normalization treatment is inputted into the extreme learning machine (ELM) classifier to train the intelligent diagnosis model and provide fault diagnosis results. The validity of our proposed method is assessed through two experimental examples. The experimental results show that our proposed method works efficiently for identification of different fault conditions of mechanical components including rolling bearing and gearbox. Moreover, our proposed method gives better diagnosis results as compared to some existing approaches (e.g. MSE and MPE) when being utilized for fault condition classification. This research provides a new perspective for fault information extraction and fault classification of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的香之完成签到 ,获得积分10
3秒前
小昕思完成签到 ,获得积分10
10秒前
随心所欲完成签到 ,获得积分10
13秒前
星辰大海应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
心想事成完成签到 ,获得积分10
21秒前
如意2023完成签到 ,获得积分10
21秒前
mochalv123完成签到 ,获得积分10
26秒前
空儒完成签到 ,获得积分10
26秒前
sll完成签到 ,获得积分10
31秒前
坦率的从波完成签到 ,获得积分10
51秒前
yan完成签到,获得积分10
58秒前
白柏233完成签到,获得积分10
59秒前
hz_sz完成签到,获得积分10
1分钟前
氟锑酸完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
困困困完成签到 ,获得积分10
1分钟前
ZhaoZitong发布了新的文献求助10
1分钟前
mumu发布了新的文献求助10
1分钟前
1分钟前
alanbike完成签到,获得积分10
1分钟前
unicornmed发布了新的文献求助10
1分钟前
mumu完成签到,获得积分10
1分钟前
沈呆呆完成签到,获得积分10
1分钟前
赵李锋完成签到,获得积分10
1分钟前
Shandongdaxiu完成签到 ,获得积分10
1分钟前
启程完成签到 ,获得积分10
2分钟前
千帆破浪完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助50
2分钟前
飞云完成签到 ,获得积分10
2分钟前
LOST完成签到 ,获得积分10
2分钟前
huiluowork完成签到 ,获得积分10
3分钟前
康康完成签到 ,获得积分10
3分钟前
小果完成签到 ,获得积分10
3分钟前
独特易形完成签到 ,获得积分10
4分钟前
nojego完成签到,获得积分10
4分钟前
harden9159完成签到,获得积分10
4分钟前
jlw完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612722
求助须知:如何正确求助?哪些是违规求助? 4017820
关于积分的说明 12436745
捐赠科研通 3700015
什么是DOI,文献DOI怎么找? 2040543
邀请新用户注册赠送积分活动 1073321
科研通“疑难数据库(出版商)”最低求助积分说明 956976