Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection

模式识别(心理学) 计算机科学 特征选择 人工智能 特征提取 支持向量机 熵(时间箭头) 极限学习机 分类器(UML) 断层(地质) 振动 数据挖掘 机器学习 人工神经网络 物理 地质学 量子力学 地震学
作者
Xiaoan Yan,Minping Jia
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:163: 450-471 被引量:211
标识
DOI:10.1016/j.knosys.2018.09.004
摘要

Intelligent fault diagnosis of rotating machinery is essentially a pattern recognition problem. Meanwhile, effective feature extraction from the raw vibration signal is an important procedure for timely detection of mechanical health status and the assessment of fault recognition results. Therefore, to efficiently extract fault feature information and improve fault diagnosis accuracy, a novel fault diagnosis technique based on improved multiscale dispersion entropy (IMDE) and max-relevance min-redundancy (mRMR) is proposed in this paper. Firstly, the IMDE method is developed to capture multi-scale fault features from the collected original vibration signal, which can overcome the deficiencies of traditional multiscale entropy and improve the stability of the recently presented multiscale dispersion entropy (MDE). Then, the mRMR algorithm is utilized to select automatically the sensitive features from the candidate multi-scale features without any prior knowledge. Finally, the sensitive feature vector set after normalization treatment is inputted into the extreme learning machine (ELM) classifier to train the intelligent diagnosis model and provide fault diagnosis results. The validity of our proposed method is assessed through two experimental examples. The experimental results show that our proposed method works efficiently for identification of different fault conditions of mechanical components including rolling bearing and gearbox. Moreover, our proposed method gives better diagnosis results as compared to some existing approaches (e.g. MSE and MPE) when being utilized for fault condition classification. This research provides a new perspective for fault information extraction and fault classification of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sulh完成签到,获得积分20
1秒前
stone发布了新的文献求助10
1秒前
lu完成签到,获得积分20
1秒前
哈哈哈哈完成签到 ,获得积分10
2秒前
liuliu75发布了新的文献求助10
2秒前
3秒前
3秒前
重要初翠完成签到,获得积分10
5秒前
lu发布了新的文献求助10
6秒前
6秒前
文艺雪糕完成签到,获得积分10
6秒前
liuliu75完成签到,获得积分10
7秒前
8秒前
传奇3应助ab采纳,获得10
8秒前
康康完成签到,获得积分10
8秒前
赘婿应助imbecile采纳,获得10
8秒前
lemonlmm应助susu采纳,获得30
8秒前
wanci应助hsing采纳,获得10
9秒前
赘婿应助天真诗槐采纳,获得10
9秒前
李健应助Distance采纳,获得10
10秒前
11秒前
orixero应助semigreen采纳,获得10
11秒前
luckin9发布了新的文献求助10
12秒前
李健的小迷弟应助家家采纳,获得10
13秒前
16秒前
17秒前
Max驳回了Yziii应助
17秒前
yxh完成签到 ,获得积分10
20秒前
caster1完成签到 ,获得积分10
20秒前
21秒前
LQQ完成签到 ,获得积分10
21秒前
万能图书馆应助sanxing采纳,获得10
21秒前
ABC完成签到,获得积分10
21秒前
calbee完成签到 ,获得积分10
21秒前
semigreen发布了新的文献求助10
23秒前
科研通AI2S应助温朋涛采纳,获得10
23秒前
天真诗槐完成签到,获得积分10
24秒前
24秒前
lwh104完成签到,获得积分10
26秒前
跳跃醉蝶完成签到,获得积分20
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157968
求助须知:如何正确求助?哪些是违规求助? 2809281
关于积分的说明 7881247
捐赠科研通 2467760
什么是DOI,文献DOI怎么找? 1313696
科研通“疑难数据库(出版商)”最低求助积分说明 630498
版权声明 601943