Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection

模式识别(心理学) 计算机科学 特征选择 人工智能 特征提取 支持向量机 熵(时间箭头) 极限学习机 分类器(UML) 断层(地质) 振动 数据挖掘 机器学习 人工神经网络 物理 地质学 量子力学 地震学
作者
Xiaoan Yan,Minping Jia
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:163: 450-471 被引量:211
标识
DOI:10.1016/j.knosys.2018.09.004
摘要

Intelligent fault diagnosis of rotating machinery is essentially a pattern recognition problem. Meanwhile, effective feature extraction from the raw vibration signal is an important procedure for timely detection of mechanical health status and the assessment of fault recognition results. Therefore, to efficiently extract fault feature information and improve fault diagnosis accuracy, a novel fault diagnosis technique based on improved multiscale dispersion entropy (IMDE) and max-relevance min-redundancy (mRMR) is proposed in this paper. Firstly, the IMDE method is developed to capture multi-scale fault features from the collected original vibration signal, which can overcome the deficiencies of traditional multiscale entropy and improve the stability of the recently presented multiscale dispersion entropy (MDE). Then, the mRMR algorithm is utilized to select automatically the sensitive features from the candidate multi-scale features without any prior knowledge. Finally, the sensitive feature vector set after normalization treatment is inputted into the extreme learning machine (ELM) classifier to train the intelligent diagnosis model and provide fault diagnosis results. The validity of our proposed method is assessed through two experimental examples. The experimental results show that our proposed method works efficiently for identification of different fault conditions of mechanical components including rolling bearing and gearbox. Moreover, our proposed method gives better diagnosis results as compared to some existing approaches (e.g. MSE and MPE) when being utilized for fault condition classification. This research provides a new perspective for fault information extraction and fault classification of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sue完成签到 ,获得积分10
刚刚
刚刚
执着期待完成签到,获得积分10
1秒前
科研通AI6应助小仙女采纳,获得10
1秒前
对没错发布了新的文献求助10
2秒前
热锅上的蚂蚁完成签到,获得积分10
2秒前
调皮黄豆完成签到,获得积分10
2秒前
2秒前
cy发布了新的文献求助10
3秒前
SUN发布了新的文献求助10
3秒前
hadern发布了新的文献求助10
3秒前
大模型应助建设采纳,获得10
3秒前
3秒前
月落无痕2025完成签到,获得积分10
4秒前
谢谢发布了新的文献求助10
4秒前
dd完成签到,获得积分10
4秒前
可爱的从寒完成签到,获得积分10
4秒前
张月完成签到,获得积分10
4秒前
尼古拉斯完成签到,获得积分10
4秒前
deng完成签到 ,获得积分10
4秒前
5秒前
Painkiller_完成签到,获得积分10
5秒前
瑾辰发布了新的文献求助10
6秒前
栢君苏mini完成签到,获得积分10
6秒前
小二郎应助lcr采纳,获得10
6秒前
6秒前
6秒前
HtObama完成签到,获得积分10
6秒前
希望天下0贩的0应助jie采纳,获得10
6秒前
7秒前
月Y完成签到 ,获得积分10
8秒前
liujie完成签到,获得积分10
8秒前
酷波er应助十一采纳,获得10
8秒前
李小雨完成签到,获得积分10
9秒前
不想上班了完成签到,获得积分10
9秒前
acs924发布了新的文献求助10
9秒前
Hupoo发布了新的文献求助10
9秒前
FashionBoy应助hadern采纳,获得10
9秒前
拜楞严完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349