亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine

风力发电 概率预测 概率逻辑 极限学习机 电力系统 计算机科学 风电预测 发电 可靠性工程 功率(物理) 工程类 机器学习 人工智能 人工神经网络 电气工程 物理 量子力学
作者
Can Wan,Zhao Xu,Pierre Pinson,Zhao Yang Dong,Kit Po Wong
出处
期刊:IEEE Transactions on Power Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1033-1044 被引量:704
标识
DOI:10.1109/tpwrs.2013.2287871
摘要

Accurate and reliable forecast of wind power is essential to power system operation and control. However, due to the nonstationarity of wind power series, traditional point forecasting can hardly be accurate, leading to increased uncertainties and risks for system operation. This paper proposes an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrapmethods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified with the best performance. Consequently, a new method for prediction intervals formulation based on theELMand the pairs bootstrap is developed.Wind power forecasting has been conducted in different seasons using the proposed approach with the historical wind power time series as the inputs alone. The results demonstrate that the proposed method is effective for probabilistic forecasting of wind power generation with a high potential for practical applications in power systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘哈哈完成签到 ,获得积分10
6秒前
cdercder完成签到,获得积分0
10秒前
粽子完成签到,获得积分10
15秒前
Esperanza完成签到,获得积分10
19秒前
orixero应助保持科研热情采纳,获得10
23秒前
31秒前
35秒前
xingsixs完成签到 ,获得积分10
35秒前
Willow完成签到,获得积分10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
36秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
香蕉觅云应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
39秒前
krajicek发布了新的文献求助10
46秒前
1分钟前
1分钟前
1分钟前
华仔应助石榴汁的书采纳,获得10
1分钟前
1分钟前
krajicek发布了新的文献求助10
1分钟前
krajicek完成签到,获得积分10
1分钟前
整齐的长颈鹿给整齐的长颈鹿的求助进行了留言
2分钟前
2分钟前
Zhao0112发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Owen应助冷静新烟采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
0911wxt发布了新的文献求助10
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755340
求助须知:如何正确求助?哪些是违规求助? 5493931
关于积分的说明 15381135
捐赠科研通 4893488
什么是DOI,文献DOI怎么找? 2632142
邀请新用户注册赠送积分活动 1579983
关于科研通互助平台的介绍 1535786