Density peak clustering based on relative density relationship

聚类分析 核密度估计 数学 星团(航天器) 核(代数) 密度估算 统计 模式识别(心理学) 算法 数据挖掘 计算机科学 人工智能 组合数学 估计员 程序设计语言
作者
Jian Hou,Aihua Zhang,Naiming Qi
出处
期刊:Pattern Recognition [Elsevier]
卷期号:108: 107554-107554 被引量:58
标识
DOI:10.1016/j.patcog.2020.107554
摘要

The density peak clustering algorithm treats local density peaks as cluster centers, and groups non-center data points by assuming that one data point and its nearest higher-density neighbor are in the same cluster. While this algorithm is shown to be promising in some applications, its clustering results are found to be sensitive to density kernels, and large density differences across clusters tend to result in wrong cluster centers. In this paper we attribute these problems to the inconsistency between the assumption and implementation adopted in this algorithm. While the assumption is based totally on relative density relationship, this algorithm adopts absolute density as one criterion to identify cluster centers. This observation prompts us to present a cluster center identification criterion based only on relative density relationship. Specifically, we define the concept of subordinate to describe the relative density relationship, and use the number of subordinates as a criterion to identify cluster centers. Our approach makes use of only relative density relationship and is less influenced by density kernels and density differences across clusters. In addition, we discuss the problems of two existing density kernels, and present an average-distance based kernel. In data clustering experiments we validate the new criterion and density kernel respectively, and then test the whole algorithm and compare with some other clustering algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助Cssss采纳,获得10
1秒前
英俊的铭应助Cssss采纳,获得10
1秒前
乐乐应助Cssss采纳,获得10
1秒前
of发布了新的文献求助10
2秒前
呆萌灵竹完成签到,获得积分10
2秒前
123by发布了新的文献求助10
2秒前
cxh发布了新的文献求助30
3秒前
3秒前
5秒前
6秒前
6秒前
标致若风应助JoJo采纳,获得20
6秒前
6秒前
小二郎应助明泽额尔顿采纳,获得10
8秒前
柚子完成签到 ,获得积分10
8秒前
8秒前
科研通AI2S应助迷路的尔丝采纳,获得10
8秒前
9秒前
紧张的丹云完成签到,获得积分10
9秒前
9秒前
WNL发布了新的文献求助10
10秒前
打烊完成签到,获得积分10
10秒前
anan应助lx840518采纳,获得50
11秒前
11秒前
茴香发布了新的文献求助10
13秒前
悠旷完成签到 ,获得积分10
13秒前
13秒前
123by完成签到,获得积分10
14秒前
14秒前
14秒前
hangover发布了新的文献求助10
15秒前
周周完成签到,获得积分10
15秒前
2222222222完成签到,获得积分20
15秒前
不倦应助Niat采纳,获得10
15秒前
15秒前
Time完成签到,获得积分10
15秒前
YYYang完成签到,获得积分10
16秒前
Kyle完成签到 ,获得积分10
16秒前
Ray完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271196
求助须知:如何正确求助?哪些是违规求助? 4429021
关于积分的说明 13786927
捐赠科研通 4307036
什么是DOI,文献DOI怎么找? 2363433
邀请新用户注册赠送积分活动 1359035
关于科研通互助平台的介绍 1321984