Density peak clustering based on relative density relationship

聚类分析 核密度估计 数学 星团(航天器) 核(代数) 密度估算 统计 模式识别(心理学) 算法 数据挖掘 计算机科学 人工智能 组合数学 估计员 程序设计语言
作者
Jian Hou,Aihua Zhang,Naiming Qi
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:108: 107554-107554 被引量:58
标识
DOI:10.1016/j.patcog.2020.107554
摘要

The density peak clustering algorithm treats local density peaks as cluster centers, and groups non-center data points by assuming that one data point and its nearest higher-density neighbor are in the same cluster. While this algorithm is shown to be promising in some applications, its clustering results are found to be sensitive to density kernels, and large density differences across clusters tend to result in wrong cluster centers. In this paper we attribute these problems to the inconsistency between the assumption and implementation adopted in this algorithm. While the assumption is based totally on relative density relationship, this algorithm adopts absolute density as one criterion to identify cluster centers. This observation prompts us to present a cluster center identification criterion based only on relative density relationship. Specifically, we define the concept of subordinate to describe the relative density relationship, and use the number of subordinates as a criterion to identify cluster centers. Our approach makes use of only relative density relationship and is less influenced by density kernels and density differences across clusters. In addition, we discuss the problems of two existing density kernels, and present an average-distance based kernel. In data clustering experiments we validate the new criterion and density kernel respectively, and then test the whole algorithm and compare with some other clustering algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谨慎秋珊完成签到 ,获得积分10
1秒前
王富贵发布了新的文献求助10
2秒前
3秒前
闪闪的翠绿完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
英姑应助小胡爱科研采纳,获得10
4秒前
4秒前
6秒前
曾经小伙完成签到 ,获得积分10
6秒前
阿默完成签到,获得积分10
7秒前
zhangyu应助feiying88采纳,获得10
8秒前
Rondab应助张耀文采纳,获得10
8秒前
开朗白山发布了新的文献求助10
9秒前
9秒前
上官若男应助Vaibhav采纳,获得10
11秒前
11秒前
12秒前
16秒前
16秒前
Jane发布了新的文献求助10
17秒前
烂漫绿海完成签到,获得积分10
17秒前
高大翠丝发布了新的文献求助10
17秒前
18秒前
太叔文博发布了新的文献求助10
19秒前
19秒前
19秒前
Ava应助拾陆采纳,获得10
19秒前
22秒前
22秒前
鹿茸与共发布了新的文献求助10
22秒前
22秒前
共享精神应助风筝采纳,获得10
24秒前
淡然依凝发布了新的文献求助10
25秒前
zxhhm完成签到,获得积分10
25秒前
cqy完成签到,获得积分10
26秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075