Random Forests machine learning applied to gas chromatography – Mass spectrometry derived average mass spectrum data sets for classification and characterisation of essential oils

随机森林 化学 质谱 质谱法 数据集 气相色谱法 色谱法 科瓦茨保留指数 分析化学(期刊) 生物系统 模式识别(心理学) 人工智能 算法 统计 数学 计算机科学 生物
作者
Leo Lebanov,Laura Tedone,Alireza Ghiasvand,Brett Paull
出处
期刊:Talanta [Elsevier BV]
卷期号:208: 120471-120471 被引量:41
标识
DOI:10.1016/j.talanta.2019.120471
摘要

Differences in chemical profiles of various essential oils (EOs) come from the fact that each plant species and chemotype has a distinctive secondary metabolism. Therefore, these differences can be used as the chemical markers for EO classification and determination of their quality. Herein, the Random Forests (RF) machine learning algorithm was applied to the classification of 20 different EOs. From three-way raw gas chromatography - mass spectra data, total chromatogram average mass spectra (TCAMS) and segment average mass spectra (SAMS) were created. TCAMS was generated by averaging response of each m/z over the whole chromatogram and SAMS by averaging the response of each fragment across a certain time segment within the chromatogram. The RF model was applied to the two data sets and optimised through the evaluation of pre-processed data, number of trees, and number of variables used in each node split. The performance of the model was evaluated through a cross-validation process, repeated 50 times by dividing the whole sample set into training and validation subsets. The calculated average out-of-bag error (OOBE), over 50 different training TCAMS data sets was 3.22 ± 1.29%, while for SAMS it was found to be 2.28 ± 1.33%. The minimal number of variables necessary for EO classification was determined by a nested cross-validation process. The amount of reduced variables in each step was 10%. It was shown that the TCAMS data set with 6 variables had similar prediction power as the SAMS with 30 variables. OOBE for classification of 20 EOs was 2.89 ± 1.44% and 3.70 ± 1.73%, for TCAMS and SAMS, respectively. Proximity between samples was used to evaluate their qualities. Samples with greater intra-class proximity had good similarity, while the lower ones indicated greater variations in the chemical profiles. The SAMS data set showed superior potential for quality assurance, compared with TCAMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bobo完成签到,获得积分10
1秒前
洋洋爱吃枣完成签到 ,获得积分10
3秒前
夏夏发布了新的文献求助10
8秒前
10秒前
Xu发布了新的文献求助10
15秒前
夏夏完成签到,获得积分10
20秒前
23秒前
幽默的妍完成签到 ,获得积分10
24秒前
可可完成签到 ,获得积分10
26秒前
言午完成签到 ,获得积分10
26秒前
junjie发布了新的文献求助10
26秒前
浮浮世世完成签到,获得积分10
30秒前
淡然的芷荷完成签到 ,获得积分10
33秒前
fge完成签到,获得积分10
35秒前
玻璃外的世界完成签到,获得积分10
39秒前
1111111111应助科研通管家采纳,获得10
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
leaolf应助科研通管家采纳,获得150
42秒前
Ava应助科研通管家采纳,获得10
42秒前
顾矜应助科研通管家采纳,获得10
42秒前
任kun发布了新的文献求助10
43秒前
好学的泷泷完成签到 ,获得积分10
44秒前
nano完成签到 ,获得积分10
44秒前
48秒前
纯真保温杯完成签到 ,获得积分10
52秒前
刘佳佳完成签到 ,获得积分10
53秒前
宝贝完成签到 ,获得积分10
55秒前
玛斯特尔完成签到,获得积分10
58秒前
看文献完成签到,获得积分0
59秒前
Joanne完成签到 ,获得积分10
59秒前
hikevin126完成签到,获得积分10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
mango发布了新的文献求助10
1分钟前
安详映阳完成签到 ,获得积分10
1分钟前
杨杨杨完成签到,获得积分10
1分钟前
jzmulyl完成签到,获得积分10
1分钟前
506407完成签到,获得积分10
1分钟前
aki完成签到 ,获得积分10
1分钟前
天才小榴莲完成签到,获得积分10
1分钟前
朴素羊完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918746
求助须知:如何正确求助?哪些是违规求助? 4191111
关于积分的说明 13015764
捐赠科研通 3961150
什么是DOI,文献DOI怎么找? 2171519
邀请新用户注册赠送积分活动 1189578
关于科研通互助平台的介绍 1098155