Random Forests machine learning applied to gas chromatography – Mass spectrometry derived average mass spectrum data sets for classification and characterisation of essential oils

随机森林 化学 质谱 质谱法 数据集 气相色谱法 色谱法 科瓦茨保留指数 分析化学(期刊) 生物系统 模式识别(心理学) 人工智能 算法 统计 数学 计算机科学 生物
作者
Leo Lebanov,Laura Tedone,Alireza Ghiasvand,Brett Paull
出处
期刊:Talanta [Elsevier BV]
卷期号:208: 120471-120471 被引量:41
标识
DOI:10.1016/j.talanta.2019.120471
摘要

Differences in chemical profiles of various essential oils (EOs) come from the fact that each plant species and chemotype has a distinctive secondary metabolism. Therefore, these differences can be used as the chemical markers for EO classification and determination of their quality. Herein, the Random Forests (RF) machine learning algorithm was applied to the classification of 20 different EOs. From three-way raw gas chromatography - mass spectra data, total chromatogram average mass spectra (TCAMS) and segment average mass spectra (SAMS) were created. TCAMS was generated by averaging response of each m/z over the whole chromatogram and SAMS by averaging the response of each fragment across a certain time segment within the chromatogram. The RF model was applied to the two data sets and optimised through the evaluation of pre-processed data, number of trees, and number of variables used in each node split. The performance of the model was evaluated through a cross-validation process, repeated 50 times by dividing the whole sample set into training and validation subsets. The calculated average out-of-bag error (OOBE), over 50 different training TCAMS data sets was 3.22 ± 1.29%, while for SAMS it was found to be 2.28 ± 1.33%. The minimal number of variables necessary for EO classification was determined by a nested cross-validation process. The amount of reduced variables in each step was 10%. It was shown that the TCAMS data set with 6 variables had similar prediction power as the SAMS with 30 variables. OOBE for classification of 20 EOs was 2.89 ± 1.44% and 3.70 ± 1.73%, for TCAMS and SAMS, respectively. Proximity between samples was used to evaluate their qualities. Samples with greater intra-class proximity had good similarity, while the lower ones indicated greater variations in the chemical profiles. The SAMS data set showed superior potential for quality assurance, compared with TCAMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa发布了新的文献求助10
1秒前
我是老大应助灵巧的以亦采纳,获得10
1秒前
2秒前
笑笑发布了新的文献求助10
2秒前
3秒前
5秒前
小王swim发布了新的文献求助10
7秒前
Yolo发布了新的文献求助10
7秒前
陆千万完成签到,获得积分10
7秒前
酷酷小子发布了新的文献求助10
9秒前
Squirrel发布了新的文献求助30
10秒前
领导范儿应助cc采纳,获得10
10秒前
那等不到的思恋完成签到,获得积分20
11秒前
12秒前
11完成签到,获得积分20
12秒前
李故完成签到 ,获得积分10
14秒前
Gengar发布了新的文献求助30
15秒前
15秒前
微笑驳完成签到 ,获得积分10
15秒前
七两碎银子完成签到 ,获得积分10
16秒前
少堂完成签到,获得积分10
16秒前
16秒前
ele_yuki完成签到,获得积分10
17秒前
17秒前
18秒前
song完成签到,获得积分10
18秒前
好事成双完成签到,获得积分10
19秒前
SF2768完成签到,获得积分20
20秒前
KEQIN应助激昂的枫叶采纳,获得10
20秒前
孙淼发布了新的文献求助10
20秒前
现代冬瓜完成签到,获得积分10
21秒前
21秒前
21秒前
jakie发布了新的文献求助10
22秒前
shawfang发布了新的文献求助10
22秒前
23秒前
小俞发布了新的文献求助10
24秒前
24秒前
cc发布了新的文献求助10
25秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993930
求助须知:如何正确求助?哪些是违规求助? 3534527
关于积分的说明 11265807
捐赠科研通 3274431
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883211
科研通“疑难数据库(出版商)”最低求助积分说明 809712