Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study

医学 肾移植 肾移植 肾移植 内科学 观察研究 重症监护医学
作者
Marc Raynaud,Olivier Aubert,Gillian Divard,Peter P. Reese,Nassim Kamar,Daniel Yoo,Chen-Shan Chin,É. Bailly,Matthias Büchler,Marc Ladrière,Moglie Le Quintrec,Michel Delahousse,Ivana Jurić,Nikolina Bašić‐Jukić,Marta Crespo,Hélio Tedesco‐Silva,Kamilla Linhares,Maria Cristina Ribeiro de Castro,Gervasio Soler Pujol,Jean‐Philippe Empana,Camilo Ulloa,Enver Akalin,Georg A. Böhmig,Edmund Huang,Mark D. Stegall,Andrew Bentall,Robert A. Montgomery,Stanley C. Jordan,Rainer Oberbauer,Dorry L. Segev,John J. Friedewald,Xavier Jouven,Christophe Legendre,Carmen Lefaucheur,Alexandre Loupy
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:3 (12): e795-e805 被引量:39
标识
DOI:10.1016/s2589-7500(21)00209-0
摘要

BackgroundKidney allograft failure is a common cause of end-stage renal disease. We aimed to develop a dynamic artificial intelligence approach to enhance risk stratification for kidney transplant recipients by generating continuously refined predictions of survival using updates of clinical data.MethodsIn this observational study, we used data from adult recipients of kidney transplants from 18 academic transplant centres in Europe, the USA, and South America, and a cohort of patients from six randomised controlled trials. The development cohort comprised patients from four centres in France, with all other patients included in external validation cohorts. To build deeply phenotyped cohorts of transplant recipients, the following data were collected in the development cohort: clinical, histological, immunological variables, and repeated measurements of estimated glomerular filtration rate (eGFR) and proteinuria (measured using the proteinuria to creatininuria ratio). To develop a dynamic prediction system based on these clinical assessments and repeated measurements, we used a Bayesian joint models—an artificial intelligence approach. The prediction performances of the model were assessed via discrimination, through calculation of the area under the receiver operator curve (AUC), and calibration. This study is registered with ClinicalTrials.gov, NCT04258891.Findings13 608 patients were included (3774 in the development cohort and 9834 in the external validation cohorts) and contributed 89 328 patient-years of data, and 416 510 eGFR and proteinuria measurements. Bayesian joint models showed that recipient immunological profile, allograft interstitial fibrosis and tubular atrophy, allograft inflammation, and repeated measurements of eGFR and proteinuria were independent risk factors for allograft survival. The final model showed accurate calibration and very high discrimination in the development cohort (overall dynamic AUC 0·857 [95% CI 0·847–0·866]) with a persistent improvement in AUCs for each new repeated measurement (from 0·780 [0·768–0·794] to 0·926 [0·917–0·932]; p<0·0001). The predictive performance was confirmed in the external validation cohorts from Europe (overall AUC 0·845 [0·837–0·854]), the USA (overall AUC 0·820 [0·808–0·831]), South America (overall AUC 0·868 [0·856–0·880]), and the cohort of patients from randomised controlled trials (overall AUC 0·857 [0·840–0·875]).InterpretationBecause of its dynamic design, this model can be continuously updated and holds value as a bedside tool that could refine the prognostic judgements of clinicians in everyday practice, hence enhancing precision medicine in the transplant setting.FundingMSD Avenir, French National Institute for Health and Medical Research, and Bettencourt Schueller Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只想摆烂完成签到 ,获得积分10
刚刚
wanci应助个性的振家采纳,获得10
刚刚
Donnie完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
852应助木棉采纳,获得10
1秒前
可可发布了新的文献求助10
2秒前
CipherSage应助02采纳,获得10
3秒前
科研通AI2S应助nuannuan采纳,获得10
3秒前
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
qzaima发布了新的文献求助10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
Zxx发布了新的文献求助10
6秒前
flysmile发布了新的文献求助10
6秒前
今后应助称心文博采纳,获得10
6秒前
酷波er应助太牛的GGB采纳,获得10
8秒前
9秒前
Gorge发布了新的文献求助10
9秒前
隐形元龙发布了新的文献求助30
9秒前
9秒前
11秒前
汪jy关注了科研通微信公众号
12秒前
科目三应助xiatian采纳,获得10
12秒前
13秒前
13秒前
一指流沙发布了新的文献求助10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466175
求助须知:如何正确求助?哪些是违规求助? 3059074
关于积分的说明 9064707
捐赠科研通 2749494
什么是DOI,文献DOI怎么找? 1508597
科研通“疑难数据库(出版商)”最低求助积分说明 696964
邀请新用户注册赠送积分活动 696705