Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review

医学实验室 范围(计算机科学) 数字化 计算机科学 医疗保健 最佳实践 临床实习 精密医学 人工智能 数据科学 医学 病理 经济 管理 程序设计语言 家庭医学 经济增长 计算机视觉
作者
Daniel S. Herman,Daniel D. Rhoads,Wade Schulz,Thomas J S Durant
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:67 (11): 1466-1482 被引量:15
标识
DOI:10.1093/clinchem/hvab165
摘要

Abstract Background Modern artificial intelligence (AI) and machine learning (ML) methods are now capable of completing tasks with performance characteristics that are comparable to those of expert human operators. As a result, many areas throughout healthcare are incorporating these technologies, including in vitro diagnostics and, more broadly, laboratory medicine. However, there are limited literature reviews of the landscape, likely future, and challenges of the application of AI/ML in laboratory medicine. Content In this review, we begin with a brief introduction to AI and its subfield of ML. The ensuing sections describe ML systems that are currently in clinical laboratory practice or are being proposed for such use in recent literature, ML systems that use laboratory data outside the clinical laboratory, challenges to the adoption of ML, and future opportunities for ML in laboratory medicine. Summary AI and ML have and will continue to influence the practice and scope of laboratory medicine dramatically. This has been made possible by advancements in modern computing and the widespread digitization of health information. These technologies are being rapidly developed and described, but in comparison, their implementation thus far has been modest. To spur the implementation of reliable and sophisticated ML-based technologies, we need to establish best practices further and improve our information system and communication infrastructure. The participation of the clinical laboratory community is essential to ensure that laboratory data are sufficiently available and incorporated conscientiously into robust, safe, and clinically effective ML-supported clinical diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小黄鸭发布了新的文献求助10
1秒前
英俊的铭应助Kaiwei采纳,获得10
2秒前
儒雅致远发布了新的文献求助10
2秒前
sweat发布了新的文献求助10
2秒前
GG完成签到 ,获得积分10
2秒前
2秒前
小木安华完成签到,获得积分20
3秒前
华杰完成签到,获得积分10
3秒前
che66完成签到,获得积分20
4秒前
4秒前
Blue发布了新的文献求助10
4秒前
4秒前
思源应助aaaaa采纳,获得10
4秒前
隐形曼青应助晰默采纳,获得10
4秒前
4秒前
FashionBoy应助wyh798采纳,获得10
5秒前
激情的初阳完成签到,获得积分10
5秒前
华仔应助陶醉的灵枫采纳,获得10
5秒前
5秒前
123发布了新的文献求助20
5秒前
星辰大海应助隐形的彩虹采纳,获得10
5秒前
6秒前
orixero应助小鱼鱼采纳,获得10
6秒前
乐乐应助liuzengzhang666采纳,获得10
6秒前
6秒前
6秒前
哈哈完成签到,获得积分10
7秒前
Wefaily完成签到,获得积分0
7秒前
叁拾肆完成签到,获得积分10
7秒前
大个应助胡图图采纳,获得10
7秒前
CipherSage应助jialiang采纳,获得10
7秒前
7秒前
LYXLYXLYXLA发布了新的文献求助10
8秒前
完美世界应助David采纳,获得10
8秒前
8秒前
貔貅发布了新的文献求助10
8秒前
斯文的芹菜完成签到,获得积分10
8秒前
8秒前
JamesPei应助儒雅致远采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389