已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review

医学实验室 范围(计算机科学) 数字化 计算机科学 医疗保健 最佳实践 临床实习 精密医学 人工智能 数据科学 医学 病理 经济 管理 程序设计语言 家庭医学 经济增长 计算机视觉
作者
Daniel S. Herman,Daniel D. Rhoads,Wade Schulz,Thomas J S Durant
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
卷期号:67 (11): 1466-1482 被引量:15
标识
DOI:10.1093/clinchem/hvab165
摘要

Abstract Background Modern artificial intelligence (AI) and machine learning (ML) methods are now capable of completing tasks with performance characteristics that are comparable to those of expert human operators. As a result, many areas throughout healthcare are incorporating these technologies, including in vitro diagnostics and, more broadly, laboratory medicine. However, there are limited literature reviews of the landscape, likely future, and challenges of the application of AI/ML in laboratory medicine. Content In this review, we begin with a brief introduction to AI and its subfield of ML. The ensuing sections describe ML systems that are currently in clinical laboratory practice or are being proposed for such use in recent literature, ML systems that use laboratory data outside the clinical laboratory, challenges to the adoption of ML, and future opportunities for ML in laboratory medicine. Summary AI and ML have and will continue to influence the practice and scope of laboratory medicine dramatically. This has been made possible by advancements in modern computing and the widespread digitization of health information. These technologies are being rapidly developed and described, but in comparison, their implementation thus far has been modest. To spur the implementation of reliable and sophisticated ML-based technologies, we need to establish best practices further and improve our information system and communication infrastructure. The participation of the clinical laboratory community is essential to ensure that laboratory data are sufficiently available and incorporated conscientiously into robust, safe, and clinically effective ML-supported clinical diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小解发布了新的文献求助10
1秒前
科研通AI6应助半_采纳,获得10
1秒前
sskaze完成签到 ,获得积分10
1秒前
哈哈完成签到 ,获得积分10
4秒前
走走发布了新的文献求助10
5秒前
鱼鱼鱼完成签到,获得积分10
9秒前
10秒前
斯文败类应助RR采纳,获得10
11秒前
12秒前
13秒前
朱柏松发布了新的文献求助10
14秒前
future完成签到 ,获得积分10
14秒前
呵呵心情发布了新的文献求助10
15秒前
15秒前
科研通AI5应助yuan采纳,获得30
18秒前
开放的从菡完成签到 ,获得积分10
18秒前
川2002发布了新的文献求助10
19秒前
xiao完成签到 ,获得积分10
20秒前
liuwenjie发布了新的文献求助10
21秒前
tomorrow完成签到 ,获得积分10
22秒前
23秒前
23秒前
英俊的铭应助朱柏松采纳,获得10
24秒前
24秒前
迷路凌柏完成签到 ,获得积分10
25秒前
黎明森发布了新的文献求助10
26秒前
27秒前
wsx发布了新的文献求助10
28秒前
大个应助陈1采纳,获得10
29秒前
丘比特应助xxf采纳,获得10
29秒前
星魂发布了新的文献求助10
29秒前
30秒前
31秒前
NLJY完成签到,获得积分10
33秒前
35秒前
yuan给yuan的求助进行了留言
35秒前
36秒前
朱诗佳发布了新的文献求助10
37秒前
37秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434