Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review

医学实验室 范围(计算机科学) 数字化 计算机科学 医疗保健 最佳实践 临床实习 精密医学 人工智能 数据科学 医学 病理 经济 管理 程序设计语言 家庭医学 经济增长 计算机视觉
作者
Daniel S. Herman,Daniel D. Rhoads,Wade Schulz,Thomas J S Durant
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:67 (11): 1466-1482 被引量:15
标识
DOI:10.1093/clinchem/hvab165
摘要

Abstract Background Modern artificial intelligence (AI) and machine learning (ML) methods are now capable of completing tasks with performance characteristics that are comparable to those of expert human operators. As a result, many areas throughout healthcare are incorporating these technologies, including in vitro diagnostics and, more broadly, laboratory medicine. However, there are limited literature reviews of the landscape, likely future, and challenges of the application of AI/ML in laboratory medicine. Content In this review, we begin with a brief introduction to AI and its subfield of ML. The ensuing sections describe ML systems that are currently in clinical laboratory practice or are being proposed for such use in recent literature, ML systems that use laboratory data outside the clinical laboratory, challenges to the adoption of ML, and future opportunities for ML in laboratory medicine. Summary AI and ML have and will continue to influence the practice and scope of laboratory medicine dramatically. This has been made possible by advancements in modern computing and the widespread digitization of health information. These technologies are being rapidly developed and described, but in comparison, their implementation thus far has been modest. To spur the implementation of reliable and sophisticated ML-based technologies, we need to establish best practices further and improve our information system and communication infrastructure. The participation of the clinical laboratory community is essential to ensure that laboratory data are sufficiently available and incorporated conscientiously into robust, safe, and clinically effective ML-supported clinical diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc发布了新的文献求助10
刚刚
寻道图强举报kido求助涉嫌违规
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
梦想成神发布了新的文献求助10
3秒前
殷勤的皮卡丘完成签到,获得积分10
3秒前
长苼完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
JCSY应助酥酥采纳,获得10
5秒前
5秒前
平常的茗茗完成签到,获得积分10
6秒前
呆萌语梦发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
bkagyin应助优秀的枫叶采纳,获得10
9秒前
田様应助宋灵竹采纳,获得10
9秒前
9秒前
10秒前
小魏完成签到,获得积分10
10秒前
宇文风行发布了新的文献求助10
10秒前
10秒前
所所应助梦想成神采纳,获得10
10秒前
危险份子发布了新的文献求助10
10秒前
等待的三问完成签到,获得积分10
11秒前
11秒前
11秒前
hui发布了新的文献求助10
11秒前
安子发布了新的文献求助10
12秒前
12秒前
12秒前
orixero应助肥肥菲采纳,获得10
12秒前
13秒前
李哈哈发布了新的文献求助10
13秒前
义气笑卉发布了新的文献求助20
14秒前
小丁1127应助rachel03采纳,获得30
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186