Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review

医学实验室 范围(计算机科学) 数字化 计算机科学 医疗保健 最佳实践 临床实习 精密医学 人工智能 数据科学 医学 病理 经济 管理 程序设计语言 家庭医学 经济增长 计算机视觉
作者
Daniel S. Herman,Daniel D. Rhoads,Wade Schulz,Thomas J S Durant
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:67 (11): 1466-1482 被引量:15
标识
DOI:10.1093/clinchem/hvab165
摘要

Abstract Background Modern artificial intelligence (AI) and machine learning (ML) methods are now capable of completing tasks with performance characteristics that are comparable to those of expert human operators. As a result, many areas throughout healthcare are incorporating these technologies, including in vitro diagnostics and, more broadly, laboratory medicine. However, there are limited literature reviews of the landscape, likely future, and challenges of the application of AI/ML in laboratory medicine. Content In this review, we begin with a brief introduction to AI and its subfield of ML. The ensuing sections describe ML systems that are currently in clinical laboratory practice or are being proposed for such use in recent literature, ML systems that use laboratory data outside the clinical laboratory, challenges to the adoption of ML, and future opportunities for ML in laboratory medicine. Summary AI and ML have and will continue to influence the practice and scope of laboratory medicine dramatically. This has been made possible by advancements in modern computing and the widespread digitization of health information. These technologies are being rapidly developed and described, but in comparison, their implementation thus far has been modest. To spur the implementation of reliable and sophisticated ML-based technologies, we need to establish best practices further and improve our information system and communication infrastructure. The participation of the clinical laboratory community is essential to ensure that laboratory data are sufficiently available and incorporated conscientiously into robust, safe, and clinically effective ML-supported clinical diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴滴发布了新的文献求助10
1秒前
1秒前
果果发布了新的文献求助10
1秒前
ssss发布了新的文献求助10
2秒前
PPP完成签到,获得积分10
2秒前
彼得大帝完成签到,获得积分10
2秒前
老张完成签到,获得积分10
3秒前
建成完成签到,获得积分10
3秒前
胖橘完成签到,获得积分10
3秒前
ccc应助gs采纳,获得10
3秒前
朴实的小白菜完成签到,获得积分10
4秒前
lily88发布了新的文献求助10
4秒前
温婉的凡白完成签到,获得积分10
5秒前
xing完成签到,获得积分10
6秒前
6秒前
Wk_Ye发布了新的文献求助10
7秒前
uupp完成签到,获得积分10
7秒前
7秒前
YD完成签到 ,获得积分10
8秒前
果果完成签到,获得积分20
8秒前
霁琛--完成签到,获得积分20
8秒前
9秒前
小汪同学完成签到,获得积分10
9秒前
kkkklo完成签到,获得积分10
9秒前
9秒前
研友_8KX15L完成签到,获得积分10
10秒前
10秒前
guo完成签到,获得积分10
10秒前
fukesi完成签到,获得积分10
10秒前
怡然白竹发布了新的文献求助10
10秒前
霸气的香芦应助加减乘除采纳,获得10
10秒前
包容友儿完成签到,获得积分10
10秒前
shionn完成签到,获得积分10
11秒前
5515完成签到,获得积分10
11秒前
11秒前
Painkiller_完成签到,获得积分10
11秒前
852应助wu采纳,获得10
11秒前
完美世界应助lily88采纳,获得10
11秒前
酷炫橘子完成签到,获得积分10
12秒前
滴滴滴完成签到,获得积分20
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450648
求助须知:如何正确求助?哪些是违规求助? 3046162
关于积分的说明 9005205
捐赠科研通 2734898
什么是DOI,文献DOI怎么找? 1500136
科研通“疑难数据库(出版商)”最低求助积分说明 693387
邀请新用户注册赠送积分活动 691589