亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review

医学实验室 范围(计算机科学) 数字化 计算机科学 医疗保健 最佳实践 临床实习 精密医学 人工智能 数据科学 医学 病理 经济 管理 程序设计语言 家庭医学 经济增长 计算机视觉
作者
Daniel S. Herman,Daniel D. Rhoads,Wade Schulz,Thomas J S Durant
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:67 (11): 1466-1482 被引量:15
标识
DOI:10.1093/clinchem/hvab165
摘要

Abstract Background Modern artificial intelligence (AI) and machine learning (ML) methods are now capable of completing tasks with performance characteristics that are comparable to those of expert human operators. As a result, many areas throughout healthcare are incorporating these technologies, including in vitro diagnostics and, more broadly, laboratory medicine. However, there are limited literature reviews of the landscape, likely future, and challenges of the application of AI/ML in laboratory medicine. Content In this review, we begin with a brief introduction to AI and its subfield of ML. The ensuing sections describe ML systems that are currently in clinical laboratory practice or are being proposed for such use in recent literature, ML systems that use laboratory data outside the clinical laboratory, challenges to the adoption of ML, and future opportunities for ML in laboratory medicine. Summary AI and ML have and will continue to influence the practice and scope of laboratory medicine dramatically. This has been made possible by advancements in modern computing and the widespread digitization of health information. These technologies are being rapidly developed and described, but in comparison, their implementation thus far has been modest. To spur the implementation of reliable and sophisticated ML-based technologies, we need to establish best practices further and improve our information system and communication infrastructure. The participation of the clinical laboratory community is essential to ensure that laboratory data are sufficiently available and incorporated conscientiously into robust, safe, and clinically effective ML-supported clinical diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助童严柯采纳,获得20
1秒前
Criminology34应助oleskarabach采纳,获得10
1秒前
Criminology34应助oleskarabach采纳,获得10
2秒前
Criminology34应助oleskarabach采纳,获得10
2秒前
12秒前
清脆语海发布了新的文献求助10
15秒前
Hello应助清脆语海采纳,获得10
21秒前
31秒前
34秒前
samchen完成签到,获得积分10
36秒前
Jason发布了新的文献求助10
36秒前
tomtion发布了新的文献求助10
39秒前
ww完成签到,获得积分10
43秒前
47秒前
57秒前
1分钟前
文章多多完成签到,获得积分10
1分钟前
Jason完成签到,获得积分10
1分钟前
Una完成签到,获得积分10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
1分钟前
香菜张完成签到,获得积分10
2分钟前
席江海完成签到 ,获得积分10
2分钟前
2分钟前
曦耀发布了新的文献求助10
2分钟前
2分钟前
zhjl发布了新的文献求助10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
3分钟前
c138zyx发布了新的文献求助10
3分钟前
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
ZYP发布了新的文献求助10
4分钟前
4分钟前
呜呜吴完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4749971
关于积分的说明 15007221
捐赠科研通 4797866
什么是DOI,文献DOI怎么找? 2563996
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529