Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types

成骨不全 成骨细胞 细胞外基质 骨形态发生蛋白 跨膜蛋白 骨重建 遗传学 化学 生物 细胞生物学 基因 解剖 受体 体外
作者
Milena Jovanovic,Gali Guterman‐Ram,Joan C. Marini
出处
期刊:Endocrine Reviews [The Endocrine Society]
卷期号:43 (1): 61-90 被引量:100
标识
DOI:10.1210/endrev/bnab017
摘要

Abstract Osteogenesis imperfecta (OI) is a phenotypically and genetically heterogeneous skeletal dysplasia characterized by bone fragility, growth deficiency, and skeletal deformity. Previously known to be caused by defects in type I collagen, the major protein of extracellular matrix, it is now also understood to be a collagen-related disorder caused by defects in collagen folding, posttranslational modification and processing, bone mineralization, and osteoblast differentiation, with inheritance of OI types spanning autosomal dominant and recessive as well as X-linked recessive. This review provides the latest updates on OI, encompassing both classical OI and rare forms, their mechanism, and the signaling pathways involved in their pathophysiology. There is a special emphasis on mutations in type I procollagen C-propeptide structure and processing, the later causing OI with strikingly high bone mass. Types V and VI OI, while notably different, are shown to be interrelated by the interferon-induced transmembrane protein 5 p.S40L mutation that reveals the connection between the bone-restricted interferon-induced transmembrane protein-like protein and pigment epithelium-derived factor pathways. The function of regulated intramembrane proteolysis has been extended beyond cholesterol metabolism to bone formation by defects in regulated membrane proteolysis components site-2 protease and old astrocyte specifically induced-substance. Several recently proposed candidate genes for new types of OI are also presented. Discoveries of new OI genes add complexity to already-challenging OI management; current and potential approaches are summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
2秒前
点凌蝶完成签到,获得积分10
3秒前
jj完成签到 ,获得积分10
5秒前
菲灵完成签到,获得积分10
8秒前
汪鸡毛完成签到 ,获得积分10
9秒前
9秒前
MMM完成签到 ,获得积分10
9秒前
瞿亭龙完成签到,获得积分10
11秒前
乱世完成签到,获得积分10
12秒前
14秒前
miao举报左眼天堂求助涉嫌违规
15秒前
直率书芹完成签到,获得积分10
16秒前
20秒前
21秒前
啦啦啦完成签到 ,获得积分10
21秒前
南风9723完成签到,获得积分10
23秒前
NianAnYu完成签到,获得积分10
24秒前
卓桥完成签到,获得积分10
25秒前
李李李李李完成签到,获得积分10
25秒前
26秒前
酷波er应助777采纳,获得10
28秒前
彭于晏应助杪123采纳,获得10
28秒前
留胡子的霖完成签到,获得积分10
31秒前
34秒前
wang完成签到,获得积分10
35秒前
36秒前
威武的匕完成签到 ,获得积分10
36秒前
领导范儿应助灵巧尔云采纳,获得10
36秒前
jj824完成签到 ,获得积分10
38秒前
机灵的冰珍完成签到,获得积分10
39秒前
惑感完成签到 ,获得积分10
43秒前
陈影发布了新的文献求助10
43秒前
45秒前
SciGPT应助心灵美的白卉采纳,获得10
45秒前
杪123发布了新的文献求助10
48秒前
希望天下0贩的0应助zzzzzzy采纳,获得10
52秒前
ZcoisiniS完成签到,获得积分10
53秒前
嗯哼应助slp采纳,获得20
53秒前
yin完成签到 ,获得积分10
54秒前
57秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292087
求助须知:如何正确求助?哪些是违规求助? 2928499
关于积分的说明 8437215
捐赠科研通 2600507
什么是DOI,文献DOI怎么找? 1419116
科研通“疑难数据库(出版商)”最低求助积分说明 660237
邀请新用户注册赠送积分活动 642866