粘弹性
偏转(物理)
边值问题
本征函数
数学分析
标准线性实体模型
数学
线弹性
准静态过程
几何学
经典力学
物理
材料科学
结构工程
特征向量
工程类
有限元法
复合材料
量子力学
作者
Keiichiro Sonoda,Harutoshi Kobayashi
出处
期刊:Journal of the Engineering Mechanics Division
[American Society of Civil Engineers]
日期:1980-04-01
卷期号:106 (2): 323-338
被引量:7
标识
DOI:10.1061/jmcea3.0002587
摘要
This paper deals with the quasistatic bending problems of the rectangular plates and the infinite strips on the linear viscoelastic foundations of the Kelvin, the Maxwell and the standard linear solid types. The general solutions for them are developed by using the eigenfunctions derived from a free lateral-vibration problem of the plates with the same geometries and the same boundary conditions and by utilizing the correspondence principle between linear elastic boundary value problem and linear viscoelastic one. Numerical results for the variations of the deflection in space and time are illustrated for a rectangular plate and an infinite strip on the viscoelastic foundation of the standard linear solid type.
科研通智能强力驱动
Strongly Powered by AbleSci AI