Prediction of the Compressive Strength for Cement-Based Materials with Metakaolin Based on the Hybrid Machine Learning Method

偏高岭土 抗压强度 水泥 材料科学 复合材料 高效减水剂
作者
Jiandong Huang,Mengmeng Zhou,Hongwei Yuan,Mohanad Muayad Sabri Sabri,Xiang Li
出处
期刊:Materials [MDPI AG]
卷期号:15 (10): 3500-3500 被引量:25
标识
DOI:10.3390/ma15103500
摘要

Cement-based materials are widely used in construction engineering because of their excellent properties. With the continuous improvement of the functional requirements of building infrastructure, the performance requirements of cement-based materials are becoming higher and higher. As an important property of cement-based materials, compressive strength is of great significance to its research. In this study, a Random Forests (RF) and Firefly Algorithm (FA) hybrid machine learning model was proposed to predict the compressive strength of metakaolin cement-based materials. The database containing five input parameters (cement grade, water to binder ratio, cement-sand ratio, metakaolin to binder ratio, and superplasticizer) based on 361 samples was employed for the prediction. In this model, FA was used to optimize the hyperparameters, and RF was used to predict the compressive strength of metakaolin cement-based materials. The reliability of the hybrid model was verified by comparing the predicted and actual values of the dataset. The importance of five variables was also evaluated, and the results showed the cement grade has the greatest influence on the compressive strength of metakaolin cement-based materials, followed by the water-binder ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橘子完成签到,获得积分10
1秒前
加油发布了新的文献求助10
1秒前
华仔应助活力忆秋采纳,获得10
1秒前
彤彤完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
LFP完成签到 ,获得积分10
3秒前
黑钻完成签到,获得积分10
3秒前
小晟完成签到,获得积分10
3秒前
4秒前
4秒前
musei完成签到 ,获得积分20
4秒前
科研人完成签到,获得积分10
4秒前
充电宝应助我是哑巴采纳,获得10
4秒前
5秒前
6秒前
7秒前
支摇伽发布了新的文献求助10
7秒前
清脆大门完成签到,获得积分10
7秒前
8秒前
小羊发布了新的文献求助10
8秒前
FashionBoy应助bobo采纳,获得10
8秒前
隐形曼青应助一隅采纳,获得10
9秒前
传奇3应助科研人采纳,获得10
9秒前
9秒前
zjzyw完成签到,获得积分10
9秒前
狂野的河马完成签到,获得积分10
9秒前
啊福完成签到,获得积分10
9秒前
科研顺利发布了新的文献求助10
9秒前
从别后忆相逢完成签到 ,获得积分10
10秒前
10秒前
勤奋的松鼠完成签到,获得积分10
10秒前
10秒前
xxx7749发布了新的文献求助10
11秒前
背后的鹭洋完成签到,获得积分10
11秒前
淡淡猎豹完成签到,获得积分10
12秒前
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167644
求助须知:如何正确求助?哪些是违规求助? 2819109
关于积分的说明 7924992
捐赠科研通 2478979
什么是DOI,文献DOI怎么找? 1320569
科研通“疑难数据库(出版商)”最低求助积分说明 632836
版权声明 602443