生物医学工程
再生(生物学)
材料科学
脚手架
骨愈合
基质(化学分析)
间充质干细胞
细胞生物学
解剖
医学
复合材料
生物
作者
Junxiang Hao,Baoshuai Bai,Zheng Ci,Jincheng Tang,Guanhuai Hu,Chengxiang Dai,Mengyuan Yu,Meng Li,Wei Zhang,Y. Zhang,Wenjie Ren,Yujie Hua,Guangdong Zhou
标识
DOI:10.1016/j.bioactmat.2021.12.013
摘要
Physiological repair of large-sized bone defects is great challenging in clinic due to a lack of ideal grafts suitable for bone regeneration. Decalcified bone matrix (DBM) is considered as an ideal bone regeneration scaffold, but low cell seeding efficiency and a poor osteoinductive microenvironment greatly restrict its application in large-sized bone regeneration. To address these problems, we proposed a novel strategy of bone regeneration units (BRUs) based on microgels produced by photo-crosslinkable and microfluidic techniques, containing both the osteogenic ingredient DBM and vascular endothelial growth factor (VEGF) for accurate biomimic of an osteoinductive microenvironment. The physicochemical properties of microgels could be precisely controlled and the microgels effectively promoted adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BRUs were successfully constructed by seeding BMSCs onto microgels, which achieved reliable bone regeneration in vivo. Finally, by integrating the advantages of BRUs in bone regeneration and the advantages of DBM scaffolds in 3D morphology and mechanical strength, a BRU-loaded DBM framework successfully regenerated bone tissue with the desired 3D morphology and effectively repaired a large-sized bone defect of rabbit tibia. The current study developed an ideal bone biomimetic microcarrier and provided a novel strategy for bone regeneration and large-sized bone defect repair.
科研通智能强力驱动
Strongly Powered by AbleSci AI