Exploiting the capacity merits of Si anodes in the energy-dense prototypes via a homogeneous prelithiation therapy

材料科学 阳极 阴极 化学工程 电极 电化学 箔法 同种类的 纳米技术 复合材料 热力学 电气工程 物理 工程类 物理化学 化学
作者
Helin Wang,Min Zhang,Qiurong Jia,Dou Du,Fu Liu,Miao Bai,Wenyu Zhao,Zhiqiao Wang,Ting Liu,Xiaoyu Tang,Shaowen Li,Yue Ma
出处
期刊:Nano Energy [Elsevier]
卷期号:95: 107026-107026 被引量:24
标识
DOI:10.1016/j.nanoen.2022.107026
摘要

The practical exploitation of the high-capacity Si anodes suffers from the insufficient cation utilization degree in the energy-dense batteries, which originates from unstable interfacial dynamics, lithiation-induced mechanical stress, and irreversible Li trapping in the alloy intermediates. Herein, we develop a scalable, indirect mechanical calendaring approach to enable the homogeneous prelithiation process, specifically through interpolating an intermediate buffer layer (IBL) with tunable electronic/ionic pathways in-between the lithium foil source and the target high-capacity electrode. Upon the prototype assembly of various prelithiated Si/Graphite anodes (450–1000 mAh g−1 at the constant areal capacity of 4.6 mAh cm−2) and the LiNi0.8Co0.1Mn0.1O2 cathode (NCM811, 23 mg cm−2 for the double-sided electrode), the enhanced Li utilization degree with the highest energy density up to 362 Wh kg−1 could be achieved on the realistic cell level (1.6 Ah pouch model). More encouragingly, the reversible phasic evolution of both the cathode and anode, upon the Li+ inventory replenishment, are real-time tracked by the transmission-mode operando X-ray diffraction (XRD). This IBL-regulated approach is further extended to construct an environmental-adaptive composite film that integrates the metallic Li source, the prelithiation of which could well function even at the extreme humid conditions (long-time shelf life or relative humidity up to 85%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子时月发布了新的文献求助10
1秒前
2秒前
是冬天完成签到 ,获得积分10
2秒前
Lxxx_7完成签到 ,获得积分10
2秒前
12完成签到 ,获得积分10
3秒前
sai发布了新的文献求助10
3秒前
CodeCraft应助wzxxxx采纳,获得10
4秒前
Andy完成签到 ,获得积分10
4秒前
小可完成签到 ,获得积分10
5秒前
斯文败类应助shanjianjie采纳,获得20
5秒前
笋蒸鱼发布了新的文献求助10
5秒前
1321完成签到,获得积分10
5秒前
huahua完成签到,获得积分10
5秒前
66应助马佳凯采纳,获得10
8秒前
林溪完成签到,获得积分10
8秒前
Amber应助CTX采纳,获得10
8秒前
lan完成签到 ,获得积分10
8秒前
共享精神应助Elaine采纳,获得10
10秒前
10秒前
安静一曲完成签到 ,获得积分10
10秒前
11秒前
完美世界应助嘎嘎顺利采纳,获得10
11秒前
崔靥完成签到,获得积分10
11秒前
12秒前
阿敏关注了科研通微信公众号
12秒前
一只绒可可完成签到,获得积分10
12秒前
CBY完成签到,获得积分10
12秒前
12秒前
QYPANG完成签到,获得积分10
13秒前
子时月完成签到,获得积分10
14秒前
脑洞疼应助xlx采纳,获得10
14秒前
jym完成签到,获得积分10
14秒前
14秒前
田様应助笑点低蜜蜂采纳,获得10
14秒前
今后应助乐观的一一采纳,获得10
15秒前
开朗向真完成签到,获得积分10
15秒前
15秒前
奋斗映寒发布了新的文献求助10
15秒前
梓榆发布了新的文献求助10
15秒前
帅气的沧海完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740