亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Astrea:Auto-Serverless Analytics Towards Cost-Efficiency and QoS-Awareness

计算机科学 分析 供应 人工智能 数据科学 操作系统
作者
Jananie Jarachanthan,Li Chen,Fei Xu,Bo Li
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 3833-3849 被引量:10
标识
DOI:10.1109/tpds.2022.3172069
摘要

With the ability to simplify the code deployment with one-click upload and lightweight execution, serverless computing has emerged as a promising paradigm with increasing popularity. However, there remain open challenges when adapting data-intensive analytics applications to the serverless context, in which users of serverless analytics encounter the difficulty in coordinating computation across different stages and provisioning resources in a large configuration space. This paper presents our design and implementation of Astrea , which configures and orchestrates serverless analytics jobs in an autonomous manner, while taking into account flexibly-specified user requirements. Astrea relies on the modeling of performance and cost which characterizes the intricate interplay among multi-dimensional factors (e.g., function memory size, degree of parallelism at each stage). We formulate an optimization problem based on user-specific requirements towards performance enhancement or cost reduction, and develop a set of algorithms based on graph theory to obtain the optimal job execution. We deploy Astrea in the AWS Lambda platform and conduct real-world experiments over representative benchmarks, including Big Data analytics and machine learning workloads, at different scales. Extensive results demonstrate that Astrea can achieve the optimal execution decision for serverless data analytics, in comparison with various provisioning and deployment baselines. For example, when compared with three provisioning baselines, Astrea manages to reduce the job completion time by 21% to 69% under a given budget constraint, while saving cost by 20% to 84% without violating performance requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bowman完成签到,获得积分10
5秒前
Jasper应助QI采纳,获得10
10秒前
16秒前
生姜批发刘哥完成签到 ,获得积分10
19秒前
QI发布了新的文献求助10
24秒前
26秒前
QI发布了新的文献求助10
31秒前
33秒前
隐形曼青应助Gyz采纳,获得10
33秒前
科研通AI2S应助噗噗采纳,获得10
34秒前
大模型应助l1采纳,获得10
36秒前
QI发布了新的文献求助10
38秒前
42秒前
FashionBoy应助ertredffg采纳,获得10
45秒前
46秒前
啤酒半斤发布了新的文献求助200
47秒前
脑洞疼应助雪白的凡灵采纳,获得10
51秒前
fly发布了新的文献求助10
52秒前
闪闪凝梦完成签到 ,获得积分10
54秒前
良菵完成签到 ,获得积分10
56秒前
Nicole完成签到 ,获得积分10
57秒前
啤酒半斤完成签到,获得积分10
59秒前
59秒前
1分钟前
1分钟前
小汪家完成签到,获得积分10
1分钟前
1分钟前
Swear完成签到 ,获得积分10
1分钟前
snah完成签到 ,获得积分10
1分钟前
李月月发布了新的文献求助10
1分钟前
老薛完成签到,获得积分10
1分钟前
科研通AI2S应助古新采纳,获得10
1分钟前
小汪家发布了新的文献求助10
1分钟前
1分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
1分钟前
柔弱的无心完成签到 ,获得积分10
1分钟前
123发布了新的文献求助10
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
成熟稳重痴情完成签到,获得积分10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268584
求助须知:如何正确求助?哪些是违规求助? 2908068
关于积分的说明 8344359
捐赠科研通 2578470
什么是DOI,文献DOI怎么找? 1402013
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634393