A novel particle swarm optimization algorithm with Levy flight

莱维航班 粒子群优化 最大值和最小值 数学优化 多群优化 水准点(测量) 元启发式 早熟收敛 稳健性(进化) 极限(数学) 计算机科学 局部搜索(优化) 随机搜索 趋同(经济学) 人口 算法 数学 随机游动 统计 数学分析 生物化学 化学 人口学 大地测量学 社会学 经济增长 经济 基因 地理
作者
Hüseyin Haklı,Harun Uğuz
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:23: 333-345 被引量:325
标识
DOI:10.1016/j.asoc.2014.06.034
摘要

Particle swarm optimization (PSO) is one of the well-known population-based techniques used in global optimization and many engineering problems. Despite its simplicity and efficiency, the PSO has problems as being trapped in local minima due to premature convergence and weakness of global search capability. To overcome these disadvantages, the PSO is combined with Levy flight in this study. Levy flight is a random walk determining stepsize using Levy distribution. Being used Levy flight, a more efficient search takes place in the search space thanks to the long jumps to be made by the particles. In the proposed method, a limit value is defined for each particle, and if the particles could not improve self-solutions at the end of current iteration, this limit is increased. If the limit value determined is exceeded by a particle, the particle is redistributed in the search space with Levy flight method. To get rid of local minima and improve global search capability are ensured via this distribution in the basic PSO. The performance and accuracy of the proposed method called as Levy flight particle swarm optimization (LFPSO) are examined on well-known unimodal and multimodal benchmark functions. Experimental results show that the LFPSO is clearly seen to be more successful than one of the state-of-the-art PSO (SPSO) and the other PSO variants in terms of solution quality and robustness. The results are also statistically compared, and a significant difference is observed between the SPSO and the LFPSO methods. Furthermore, the results of proposed method are also compared with the results of well-known and recent population-based optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
一一一发布了新的文献求助10
4秒前
7秒前
Yaoz发布了新的文献求助10
8秒前
11秒前
SciGPT应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
zhuzhuxia完成签到,获得积分10
16秒前
16秒前
爱静静应助黑眼圈采纳,获得30
18秒前
政政勇闯世界完成签到,获得积分10
19秒前
栗子应助leoooo采纳,获得10
20秒前
珊熙发布了新的文献求助10
21秒前
zj杰发布了新的文献求助10
21秒前
22秒前
君华海逸完成签到,获得积分10
22秒前
在水一方应助感动尔柳采纳,获得10
23秒前
24秒前
Clover04应助瘦瘦的寒珊采纳,获得10
24秒前
佳雪儿完成签到,获得积分10
26秒前
zyc发布了新的文献求助10
26秒前
非也非也6完成签到,获得积分10
28秒前
默11发布了新的文献求助10
28秒前
酷波er应助克己复礼采纳,获得10
28秒前
爆米花应助PONY采纳,获得10
31秒前
秋冬完成签到 ,获得积分10
31秒前
31秒前
善学以致用应助香蕉寒梅采纳,获得10
32秒前
32秒前
alison发布了新的文献求助20
32秒前
珊熙完成签到,获得积分10
34秒前
深情安青应助zyc采纳,获得10
34秒前
35秒前
Vicky完成签到 ,获得积分10
38秒前
40秒前
41秒前
TheGala完成签到,获得积分10
42秒前
感动尔柳发布了新的文献求助10
42秒前
43秒前
asdfghjk完成签到,获得积分10
43秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148036
求助须知:如何正确求助?哪些是违规求助? 2799034
关于积分的说明 7833337
捐赠科研通 2456217
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628077
版权声明 601620