Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models

缺少数据 计算机科学 数据挖掘 数据科学 光学(聚焦) 机器学习 人工智能 光学 物理
作者
Bohdana Ratitch,Michael O’Kelly,Robert Tosiello
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:12 (6): 337-347 被引量:118
标识
DOI:10.1002/pst.1549
摘要

The need to use rigorous, transparent, clearly interpretable, and scientifically justified methodology for preventing and dealing with missing data in clinical trials has been a focus of much attention from regulators, practitioners, and academicians over the past years. New guidelines and recommendations emphasize the importance of minimizing the amount of missing data and carefully selecting primary analysis methods on the basis of assumptions regarding the missingness mechanism suitable for the study at hand, as well as the need to stress‐test the results of the primary analysis under different sets of assumptions through a range of sensitivity analyses. Some methods that could be effectively used for dealing with missing data have not yet gained widespread usage, partly because of their underlying complexity and partly because of lack of relatively easy approaches to their implementation. In this paper, we explore several strategies for missing data on the basis of pattern mixture models that embody clear and realistic clinical assumptions. Pattern mixture models provide a statistically reasonable yet transparent framework for translating clinical assumptions into statistical analyses. Implementation details for some specific strategies are provided in an Appendix (available online as Supporting Information), whereas the general principles of the approach discussed in this paper can be used to implement various other analyses with different sets of assumptions regarding missing data. Copyright © 2013 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kai发布了新的文献求助10
刚刚
Lucas应助梦璃采纳,获得10
刚刚
1秒前
liu完成签到,获得积分10
2秒前
敏感时光发布了新的文献求助10
2秒前
赘婿应助yuyu采纳,获得10
2秒前
无奈友蕊发布了新的文献求助50
2秒前
南桉发布了新的文献求助20
6秒前
7秒前
7秒前
佐佐关注了科研通微信公众号
9秒前
lwk205应助伶俐从筠采纳,获得20
10秒前
11秒前
PPP完成签到,获得积分10
12秒前
梦璃发布了新的文献求助10
13秒前
kxran发布了新的文献求助10
16秒前
怡然灵薇完成签到 ,获得积分10
19秒前
南桉完成签到,获得积分10
20秒前
22秒前
Mito2009完成签到,获得积分10
23秒前
充电宝应助南桉采纳,获得10
24秒前
伊萨卡完成签到 ,获得积分10
24秒前
HEIKU应助潇潇雨歇采纳,获得10
26秒前
sp完成签到,获得积分10
26秒前
姜姜发布了新的文献求助10
27秒前
shunshun51213完成签到,获得积分10
27秒前
逆时针完成签到,获得积分10
29秒前
29秒前
31秒前
湘江雨发布了新的文献求助10
34秒前
深情安青应助咚咚采纳,获得10
34秒前
35秒前
火山应助科研通管家采纳,获得10
35秒前
FashionBoy应助科研通管家采纳,获得10
35秒前
在水一方应助科研通管家采纳,获得10
35秒前
丘比特应助姜姜采纳,获得10
37秒前
想你的腋发布了新的文献求助10
37秒前
guoxihan发布了新的文献求助10
40秒前
往往完成签到,获得积分10
45秒前
熊窈完成签到,获得积分10
49秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359852
求助须知:如何正确求助?哪些是违规求助? 2982410
关于积分的说明 8703731
捐赠科研通 2664107
什么是DOI,文献DOI怎么找? 1458854
科研通“疑难数据库(出版商)”最低求助积分说明 675293
邀请新用户注册赠送积分活动 666410