努塞尔数
舍伍德号码
流量(数学)
同伦分析法
多孔介质
达西数
机械
达西定律
偏微分方程
非线性系统
数学
扩散
常微分方程
边界层
法学
热力学
雷诺数
数学分析
材料科学
物理
微分方程
多孔性
复合材料
政治学
量子力学
湍流
作者
Tasawar Hayat,Farwa Haider,Taseer Muhammad,Ahmed Alsaedi
标识
DOI:10.1016/j.rinp.2017.08.002
摘要
This article addresses boundary-layer flow of third grade fluid saturating a non-Darcy porous medium. Induced flow is by a stretchable surface. Flow in porous media is described by employing the Darcy-Forchheimer based model. Generalized versions of Fourier's and Fick's laws via Cattaneo-Christov double diffusion expressions are utilized. Transformation method is employed for reduction process of nonlinear partial differential systems into the nonlinear ordinary differential systems. Optimal homotopy analysis method (OHAM) develops the computations. The optimal values of nonzero auxiliary parameters are computed and analyzed. The optimal solutions of temperature and concentration fields are presented through the plots. The skin friction coefficient and local Nusselt and Sherwood numbers are also studied through numerical data. Our results reveal that the local Nusselt and Sherwood numbers are higher for larger values of thermal and concentration relaxation parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI