Multifunctional roles of TEMPO-oxidized cellulose nanofibrils on the enhancement of mechanical and conductive properties of acrylic-based hydrogels for temperature response and human motion sensing

自愈水凝胶 材料科学 纤维素 导电体 丙烯酸树脂 化学工程 纳米技术 高分子化学 复合材料 工程类 涂层
作者
Jintang Luo,Tao Song,Tingting Han,Haisong Qi,Qunhua Liu,Thomas Rosenau
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:493: 152649-152649 被引量:14
标识
DOI:10.1016/j.cej.2024.152649
摘要

Simultaneously having competitive mechanical properties, fatigue-resistant stability, temperature adaptability, excellent conductivity and sensitivity has been a challenge in the design of acrylic-based conductive hydrogels if they are meant for application in electronic skin mimics capable of sensory and stimulus responses. In this work, an acrylic-based conductive hydrogel with both excellent mechanical and electrical properties was prepared based on an integrated strategy employing the multifunctionality of TEMPO-oxidized CNFs (TOCNFs) and metal ion interaction. The TOCNFs with their abundant –COOH groups played a key role in the hydrogel by a) well-dispersing polyacrylic acid (PAA) chains in the hydrogel to form a homogeneous and porous multi-network, b) furnishing more –COOH to interact with Fe3+, c) forming more hydrogen bonds with PAA and glycerol, and d) offering high modulus to the final hydrogel. The obtained optimal hydrogel showed competitive mechanical properties (0.88 MPa at 70 % compressive strain; 0.24 MPa at 873 % tensile strain) and fatigue-resistant properties (56.5 % strength retention after 500 cycles of 50 % compression; 51.7 % strength retention after 20 cycles of 200 % tensile), high electrical conductivity (2.45 S m−1) and sensitivity (GF up to 2.62 for tensile strains over 100 %), while still maintaining a high electrical conductivity (1.67 S m−1) at −25 °C. Accordingly, the hydrogel prepared in this work was able to act as an electronic skin that responds to temperature variations and detect human body movement of pressing, writing, stretching and bending with highly sensitive conductive signals, which endows it great potential for applications in humanoid robotics and multi-scenario strain sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kf033完成签到 ,获得积分10
1秒前
搞怪的易槐完成签到,获得积分10
2秒前
细腻的歌曲完成签到,获得积分10
2秒前
大个应助小可爱采纳,获得10
2秒前
灰大壮壮完成签到,获得积分20
3秒前
9秒前
9秒前
李健应助888采纳,获得10
10秒前
糊涂的不尤完成签到 ,获得积分10
12秒前
vikoer完成签到,获得积分10
15秒前
15秒前
16秒前
小蘑菇应助霸气小懒猪采纳,获得10
16秒前
Tender完成签到,获得积分10
17秒前
开心市民小刘完成签到,获得积分10
17秒前
嘻嘻汐泽完成签到,获得积分10
18秒前
777完成签到 ,获得积分10
18秒前
灰大壮壮发布了新的文献求助10
19秒前
小可爱发布了新的文献求助10
21秒前
研友_VZG7GZ应助TT2022采纳,获得30
25秒前
26秒前
白日幻想家完成签到 ,获得积分10
26秒前
26秒前
不期发布了新的文献求助10
28秒前
30秒前
开朗的尔风完成签到,获得积分20
30秒前
华仔应助zhangzhi采纳,获得10
31秒前
32秒前
正直的夏真完成签到,获得积分10
33秒前
陈旧完成签到,获得积分10
33秒前
lxg完成签到,获得积分10
34秒前
34秒前
35秒前
整齐乐驹完成签到,获得积分10
37秒前
冷傲魔镜发布了新的文献求助10
37秒前
YY发布了新的文献求助30
41秒前
meng发布了新的文献求助10
41秒前
大力的行云完成签到,获得积分10
43秒前
43秒前
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724