Kidney Tumor Classification on CT Images Using Self-Supervised Learning

人工智能 计算机科学 监督学习 模式识别(心理学) 机器学习 计算机视觉 人工神经网络
作者
Erdal Özbay,Feyza Altunbey Özbay,Farhad Soleimanian Gharehchopogh
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:176: 108554-108554
标识
DOI:10.1016/j.compbiomed.2024.108554
摘要

One of the most common diseases affecting society around the world is kidney tumor. The risk of kidney disease increases due to reasons such as consumption of ready-made food and bad habits. Early diagnosis of kidney tumors is essential for effective treatment, reducing side effects, and reducing the number of deaths. With the development of computer-aided diagnostic methods, the need for accurate renal tumor classification is also increasing. Because traditional methods based on manual detection are time-consuming, boring, and costly, high-accuracy tests can be performed faster and at a lower cost with deep learning (DL) methods in kidney tumor detection (KTD). Among the current challenges regarding artificial intelligence-assisted KTD, obtaining more precise programming information and the capacity to group with high accuracy make clinical determination more vital and bring it to an important point for current treatment in KTD prediction. This encourages us to propose a more effective DL model that can effectively assist specialist physicians in the diagnosis of kidney tumors. In this way, the workload of radiologists can be alleviated and errors in clinical diagnoses that may occur due to the complex structure of the kidney can be prevented. A large amount of data is needed during the training of the developed methods. Although various studies have been conducted to reduce the amount of data with feature selection techniques, these techniques provide little improvement in the classification accuracy rate. In this paper, a masked autoencoder (MAE) is proposed for KTD, which can produce effective results on datasets containing some samples and can be directly fine-tuned and pre-trained. Self-supervised learning (SSL) is achieved through self-distillation (SD), which can be reintroduced into the configuration loss calculation using masked patches. The SD loss on the decoder and encoder outputs' latent representation is calculated operating SSLSD-KTD. The encoder obtains local attention, while the decoder transfers its global attention to calculate losses. The SSLSD-KTD method reached 98.04 % classification accuracy on the KAUH-kidney dataset, including 8400 samples, and 82.14 % on the CT-kidney dataset, containing 840 samples. By adding more external information to the SSLSD-KTD method with transfer learning, accuracy results of 99.82 % and 95.24 % were obtained on the same datasets. Experimental results have shown that the SSLSD-KTD method can effectively extract kidney tumor features with limited data and can be an aid or even an alternative for radiologists in decision-making in the diagnosis of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魁梧的小霸王完成签到,获得积分10
1秒前
Qi完成签到 ,获得积分10
1秒前
alei1203完成签到,获得积分10
1秒前
老迟到的访文完成签到,获得积分10
2秒前
kkfly完成签到,获得积分10
2秒前
HR112完成签到,获得积分10
3秒前
花已烬完成签到,获得积分10
5秒前
wtzhang16完成签到 ,获得积分10
5秒前
甜美的夏之完成签到,获得积分10
6秒前
mg完成签到,获得积分10
6秒前
王昱旻完成签到,获得积分10
6秒前
施凝完成签到,获得积分10
7秒前
Ava应助Niko采纳,获得10
7秒前
入门的橙橙完成签到 ,获得积分10
7秒前
朝晖夕阴完成签到,获得积分10
8秒前
小萌完成签到,获得积分10
8秒前
雪白的面包完成签到 ,获得积分10
8秒前
小居很哇塞完成签到,获得积分10
8秒前
共享精神应助YUgg采纳,获得10
8秒前
370完成签到,获得积分10
8秒前
啾v咪完成签到 ,获得积分10
9秒前
9秒前
biubiubiu完成签到 ,获得积分10
10秒前
gugugaga完成签到,获得积分10
10秒前
Drhhhfff完成签到 ,获得积分10
10秒前
jjj完成签到 ,获得积分10
11秒前
11秒前
今后应助ybwei2008_163采纳,获得10
11秒前
11秒前
luckily完成签到,获得积分10
11秒前
12秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
12秒前
orixero应助kk采纳,获得10
13秒前
rainny完成签到,获得积分10
14秒前
南橘发布了新的文献求助10
14秒前
luym完成签到,获得积分10
14秒前
qu蛐发布了新的文献求助10
14秒前
南北完成签到,获得积分10
14秒前
呼呼哈哈完成签到,获得积分10
15秒前
LXZ完成签到,获得积分10
15秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219999
求助须知:如何正确求助?哪些是违规求助? 2868597
关于积分的说明 8161811
捐赠科研通 2535614
什么是DOI,文献DOI怎么找? 1368267
科研通“疑难数据库(出版商)”最低求助积分说明 645161
邀请新用户注册赠送积分活动 618494