Kidney Tumor Classification on CT Images Using Self-Supervised Learning

人工智能 计算机科学 监督学习 模式识别(心理学) 机器学习 计算机视觉 人工神经网络
作者
Erdal Özbay,Feyza Altunbey Özbay,Farhad Soleimanian Gharehchopogh
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:176: 108554-108554
标识
DOI:10.1016/j.compbiomed.2024.108554
摘要

One of the most common diseases affecting society around the world is kidney tumor. The risk of kidney disease increases due to reasons such as consumption of ready-made food and bad habits. Early diagnosis of kidney tumors is essential for effective treatment, reducing side effects, and reducing the number of deaths. With the development of computer-aided diagnostic methods, the need for accurate renal tumor classification is also increasing. Because traditional methods based on manual detection are time-consuming, boring, and costly, high-accuracy tests can be performed faster and at a lower cost with deep learning (DL) methods in kidney tumor detection (KTD). Among the current challenges regarding artificial intelligence-assisted KTD, obtaining more precise programming information and the capacity to group with high accuracy make clinical determination more vital and bring it to an important point for current treatment in KTD prediction. This encourages us to propose a more effective DL model that can effectively assist specialist physicians in the diagnosis of kidney tumors. In this way, the workload of radiologists can be alleviated and errors in clinical diagnoses that may occur due to the complex structure of the kidney can be prevented. A large amount of data is needed during the training of the developed methods. Although various studies have been conducted to reduce the amount of data with feature selection techniques, these techniques provide little improvement in the classification accuracy rate. In this paper, a masked autoencoder (MAE) is proposed for KTD, which can produce effective results on datasets containing some samples and can be directly fine-tuned and pre-trained. Self-supervised learning (SSL) is achieved through self-distillation (SD), which can be reintroduced into the configuration loss calculation using masked patches. The SD loss on the decoder and encoder outputs' latent representation is calculated operating SSLSD-KTD. The encoder obtains local attention, while the decoder transfers its global attention to calculate losses. The SSLSD-KTD method reached 98.04 % classification accuracy on the KAUH-kidney dataset, including 8400 samples, and 82.14 % on the CT-kidney dataset, containing 840 samples. By adding more external information to the SSLSD-KTD method with transfer learning, accuracy results of 99.82 % and 95.24 % were obtained on the same datasets. Experimental results have shown that the SSLSD-KTD method can effectively extract kidney tumor features with limited data and can be an aid or even an alternative for radiologists in decision-making in the diagnosis of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑白枫完成签到,获得积分10
1秒前
朦胧天完成签到,获得积分10
2秒前
3秒前
CPS完成签到,获得积分20
6秒前
科研通AI5应助砰哧采纳,获得10
6秒前
方超发布了新的文献求助10
8秒前
8秒前
灵巧青槐完成签到,获得积分10
9秒前
共享精神应助niania采纳,获得10
10秒前
FashionBoy应助niania采纳,获得10
10秒前
12秒前
美好的碧萱完成签到,获得积分10
13秒前
13秒前
我爱科研发布了新的文献求助10
13秒前
Owen应助方超采纳,获得10
14秒前
gui完成签到,获得积分10
16秒前
西柚发布了新的文献求助10
17秒前
sssss应助Lion采纳,获得10
17秒前
18秒前
yy完成签到,获得积分10
18秒前
18秒前
ppxx完成签到,获得积分10
19秒前
20秒前
良辰应助滴滴采纳,获得10
20秒前
21秒前
外向语山发布了新的文献求助10
22秒前
月皿完成签到,获得积分10
22秒前
开心易真发布了新的文献求助10
22秒前
我是老大应助Aurora采纳,获得10
23秒前
xiaoyu发布了新的文献求助10
24秒前
元气蛋完成签到,获得积分10
25秒前
25秒前
26秒前
砰哧发布了新的文献求助10
26秒前
西柚完成签到,获得积分20
27秒前
27秒前
ty完成签到,获得积分10
28秒前
顽强的小刘应助木头马尾采纳,获得20
29秒前
桐桐应助我爱科研采纳,获得10
30秒前
超人强发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670761
求助须知:如何正确求助?哪些是违规求助? 3227655
关于积分的说明 9776657
捐赠科研通 2937838
什么是DOI,文献DOI怎么找? 1609653
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735894