亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract IA020: AI-powered tool for rapid & reliable bladder cancer screening and surveillance: multicenter validation efforts

膀胱癌 医学 多中心研究 癌症 内科学 随机对照试验
作者
Joshua Levy,Keluo Yao,Jonathan D. Marotti,Darcy A. Kerr,Edward Gutmann,Samuel B Harvey,Yoseph Sayegh,Chris VandenBussche,Michael Quick,Peter I. De Costa,Lauren M. Wainman,Donald P. Green,Parth Shah,Xiaoying Liu,Louis Vaickus
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:30 (10_Supplement): IA020-IA020
标识
DOI:10.1158/1557-3265.bladder24-ia020
摘要

Abstract Bladder cancer is the most recurrent form of cancer, requiring frequent screening and surveillance, which contributes to its status as the costliest per capita. While urine cytology serves as a crucial adjunct to invasive cystoscopy, it is high volume, labor-intensive, and relatively inconsistent. Despite the implementation of The Paris System, which introduced updated quantitative guidelines, implementation of digital tools for urine cytology still trails the technological advancements seen in semi-automated Pap smear screenings. This lag can be attributed to the diverse cytomorphology of urine specimens and variation in specimen preparation and screening. Our team has developed AutoParis-X (APX), a state-of-the-art technology leveraging deep learning algorithms to extract objective (e.g., nucleus-to-cytoplasm ratio) and subjective (e.g., hyperchromasia) features from whole slide images (WSI). APX transforms these features into the Atypia Burden Score (ABS), offering a quantitative assessment of malignancy and recurrence risks on a scale from 0 to 1. Initially validated with 1300 samples (ThinPrep; Leica Aperio GT450) at Dartmouth Hitchcock, achieving an AUROC of 0.9, APX has evolved into APX-WEB, a user-friendly, web-based tool for cytopathologists. Notable challenges persist, including: 1) validating across nationally representative cohorts with varied specimen preparations and imaging, 2) addressing the intricacies of z-stacking for imaging non-monolayer preparations, and 3) integration of genomics to heighten the sensitivity of imaging assays. This study aimed to establish a performance baseline for APX's adaptability to these challenges without algorithmic adjustments. APX was applied across three distinct cohorts: 1) a preliminary national validation on 500 ThinPrep WSI in collaboration with Hologic; 2) assessment on non-monolayer specimen preparations (e.g., SurePath), using z-stacking, conducted with Johns Hopkins (n=100 WSI); and 3) a pilot study at Dartmouth (n=19) for integrating APX's imaging features with whole exomic sequencing (WES). Preliminary findings indicate: 1) Promising performance on a held-out Hologic national cohort (sensitivity=0.87, specificity=0.73; original APX study: sensitivity=0.88, specificity=0.83). 2) In SurePath z-stack WSI, the number of detected urothelial cells per cluster decreased with distance from the focus plane (rho =-0.13, p<0.001). 3) Of eight cases deemed negative or atypical by cytology, three exhibited TERT mutations, suggesting subclinical recurrence, in contrast to the consistent findings in all nine suspicious or positive cases. This highlights the potential of integrating genomics with image-based classifiers to enhance diagnostic precision. The findings underscore the need for future multicenter work aimed at refining machine learning models to achieve enhanced predictive performance across various operational parameters and settings, facilitating their implementation. Citation Format: Joshua Levy, Keluo Yao, Jonathan Marotti, Darcy Kerr, Edward Gutmann, Sam Harvey, Yoseph Sayegh, Chris VandenBussche, Michael Quick, Peter Costa, Lauren Wainman, Donald Green, Parth Shah, Xiaoying Liu, Louis Vaickus. AI-powered tool for rapid & reliable bladder cancer screening and surveillance: multicenter validation efforts [abstract]. In: Proceedings of the AACR Special Conference on Bladder Cancer: Transforming the Field; 2024 May 17-20; Charlotte, NC. Philadelphia (PA): AACR; Clin Cancer Res 2024;30(10_Suppl):Abstract nr IA020.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助凉月采纳,获得10
3秒前
柴三岁完成签到,获得积分20
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
顾君如完成签到 ,获得积分10
1分钟前
汉堡包应助柴三岁采纳,获得10
1分钟前
止戈完成签到 ,获得积分10
1分钟前
2分钟前
zhangxr发布了新的文献求助10
2分钟前
科研通AI2S应助zhangxr采纳,获得10
2分钟前
2分钟前
柴三岁发布了新的文献求助10
3分钟前
xx完成签到 ,获得积分10
3分钟前
溜圈吃不胖完成签到,获得积分10
3分钟前
123发布了新的文献求助10
3分钟前
4分钟前
小叶同学发布了新的文献求助10
4分钟前
lixuebin完成签到 ,获得积分10
5分钟前
小马甲应助小叶同学采纳,获得10
5分钟前
一串数字发布了新的文献求助10
5分钟前
h0jian09完成签到,获得积分10
6分钟前
汉堡包应助XiaoXiao采纳,获得10
6分钟前
kk发布了新的文献求助10
7分钟前
kk完成签到,获得积分10
7分钟前
7分钟前
XiaoXiao发布了新的文献求助10
7分钟前
8分钟前
Nia发布了新的文献求助10
8分钟前
上官若男应助Nia采纳,获得10
8分钟前
8分钟前
8分钟前
wjadejing发布了新的文献求助10
9分钟前
隐形曼青应助科研通管家采纳,获得10
9分钟前
hhf完成签到,获得积分10
9分钟前
123关闭了123文献求助
10分钟前
如初完成签到 ,获得积分10
10分钟前
迷你的靖雁完成签到,获得积分10
10分钟前
oceanao应助奋斗的杰采纳,获得10
10分钟前
11分钟前
爆米花应助科研通管家采纳,获得10
11分钟前
11分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899683
捐赠科研通 2472818
什么是DOI,文献DOI怎么找? 1316526
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142