Robust Principal Component Analysis Based on Fuzzy Local Information Reservation

主成分分析 人工智能 计算机科学 组分(热力学) 模式识别(心理学) 模糊逻辑 数据挖掘 热力学 物理
作者
Jinyan Pan,Xinjing Wang,Xie Junyan,Jinyan Pan,Peng Yan,Feiping Nie
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17
标识
DOI:10.1109/tpami.2024.3418983
摘要

Principal Component Analysis (PCA) aims to acquire the principal component space containing the essential structure of data, instead of being used for mining and extracting the essential structure of data. In other words, the principal component space contains not only information related to the essential structure of data but also some unrelated information. This frequently occurs when the intrinsic dimensionality of data is unknown or when it has complex distribution characteristics such as multi-modalities, manifolds, etc. Therefore, it is unreasonable to identify noise and useful information based solely on reconstruction error. For this reason, PCA is unsuitable as a preprocessing technique for most applications, especially in noisy environment. To solve this problem, this paper proposes robust PCA based on fuzzy local information reservation (FLIPCA). By analyzing the impact of reconstruction error on sample discriminability, FLIPCA provides a theoretical basis for noise identification and processing. This not only greatly improves its robustness but also extends its applicability and effectiveness as a data preprocessing technique. Meanwhile, FLIPCA maintains consistent mathematical descriptions with traditional PCA while having few adjustable hyperparameters and low algorithmic complexity. Finally, we conducted comprehensive experiments on synthetic and real-world datasets, which substantiated the superiority of our proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高问柳完成签到,获得积分20
1秒前
aaaaa发布了新的文献求助10
2秒前
甜美宛儿完成签到,获得积分10
4秒前
木子李33发布了新的文献求助10
4秒前
NexusExplorer应助笑点低映冬采纳,获得10
4秒前
高高问柳发布了新的文献求助10
4秒前
Anthocyanidin完成签到,获得积分10
5秒前
Ann发布了新的文献求助10
7秒前
小马甲应助支颐采纳,获得30
8秒前
8秒前
蕾蕾完成签到 ,获得积分10
12秒前
6666发布了新的文献求助10
13秒前
Jalynn2044完成签到,获得积分10
14秒前
凡亚比完成签到,获得积分10
14秒前
震动的平蝶完成签到 ,获得积分20
15秒前
liii完成签到 ,获得积分10
17秒前
稳重的闭月完成签到,获得积分10
18秒前
cebr完成签到,获得积分20
19秒前
20秒前
6666完成签到,获得积分10
22秒前
李健应助jwq采纳,获得10
22秒前
你好啊发布了新的文献求助10
25秒前
26秒前
32秒前
HEROTREE完成签到 ,获得积分10
35秒前
ABC发布了新的文献求助20
37秒前
37秒前
木子李33发布了新的文献求助30
38秒前
nnnick完成签到,获得积分0
38秒前
Mr.Left完成签到,获得积分10
39秒前
Ventus发布了新的文献求助10
39秒前
凡亚比关注了科研通微信公众号
40秒前
深情安青应助张瑞雪采纳,获得10
41秒前
wanci应助专一的依秋采纳,获得10
44秒前
Ava应助浮三白采纳,获得10
45秒前
传奇3应助沸腾鱼健康采纳,获得10
46秒前
顺心的舞蹈完成签到,获得积分10
46秒前
炸鸡叔发布了新的文献求助10
48秒前
49秒前
50秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043