Semi-supervised bidirectional alignment for Remote Sensing cross-domain scene classification

计算机科学 水准点(测量) 领域(数学分析) 人工智能 域适应 模式识别(心理学) 班级(哲学) 标记数据 样品(材料) 学习迁移 数学 数学分析 化学 大地测量学 色谱法 分类器(UML) 地理
作者
Wei Huang,Yilei Shi,Zhitong Xiong,Qi Wang,Xiao Xiang Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 192-203 被引量:36
标识
DOI:10.1016/j.isprsjprs.2022.11.013
摘要

Remote sensing (RS) image scene classification has obtained increasing attention for its broad application prospects. Conventional fully-supervised approaches usually require a large amount of manually-labeled data. As more and more RS images becoming available, how to make full use of these unlabeled data is becoming an urgent topic. Semi-supervised learning, which uses a few labeled data to guide the self-training of numerous unlabeled data, is an intuitive strategy. However, it is hard to apply it to cross-dataset (i.e., cross-domain) scene classification due to the significant domain shift among different datasets. To this end, semi-supervised domain adaptation (SSDA), which can reduce the domain shift and further transfer knowledge from a fully-labeled RS scene dataset (source domain) to a limited-labeled RS scene dataset (target domain), would be a feasible solution. In this paper, we propose an SSDA method termed bidirectional sample-class alignment (BSCA) for RS cross-domain scene classification. BSCA consists of two alignment strategies, unsupervised alignment (UA) and supervised alignment (SA), both of which can contribute to decreasing domain shift. UA concentrates on reducing the distance of maximum mean discrepancy across domains, with no demand for class labels. In contrast, SA aims to achieve the distribution alignment both from source samples to the associate target class centers and from target samples to the associate source class centers, with awareness of their classes. To validate the effectiveness of the proposed method, extensive ablation, comparison, and visualization experiments are conducted on an RS-SSDA benchmark built upon four widely-used RS scene classification datasets. Experimental results indicate that in comparison with some state-of-the-art methods, our BSCA achieves the superior cross-domain classification performance with compact feature representation and low-entropy classification boundary. Our code will be available at https://github.com/hw2hwei/BSCA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
快乐的忆山完成签到,获得积分10
4秒前
佳思思完成签到,获得积分10
4秒前
科研通AI5应助33采纳,获得10
4秒前
舒肤佳发布了新的文献求助10
5秒前
菜鸟队长发布了新的文献求助30
6秒前
醒醒完成签到,获得积分10
6秒前
飒尔发布了新的文献求助10
6秒前
共享精神应助飞天817采纳,获得10
7秒前
uwe完成签到,获得积分10
9秒前
SW完成签到,获得积分10
10秒前
11秒前
杜婕发布了新的文献求助10
16秒前
传奇3应助YPJ--采纳,获得10
16秒前
33完成签到,获得积分20
17秒前
湖里鱼完成签到,获得积分10
18秒前
Owen应助xzyin采纳,获得10
19秒前
星星完成签到 ,获得积分10
20秒前
丑麒完成签到,获得积分10
20秒前
陈小青发布了新的文献求助10
20秒前
8R60d8应助明理亦竹采纳,获得10
21秒前
AAA完成签到,获得积分10
22秒前
23秒前
Kindy完成签到,获得积分10
23秒前
赘婿应助coffee333采纳,获得10
23秒前
搜集达人应助yuyu采纳,获得30
26秒前
花卷发布了新的文献求助10
29秒前
整个好活完成签到,获得积分10
29秒前
老Mark完成签到,获得积分10
30秒前
霖鸿完成签到,获得积分10
32秒前
34秒前
月月完成签到 ,获得积分20
34秒前
魔幻的雪卉完成签到,获得积分10
35秒前
无花果应助陈小青采纳,获得30
35秒前
顾大喵完成签到,获得积分10
36秒前
moonlin完成签到 ,获得积分10
36秒前
科研通AI5应助调皮的思松采纳,获得10
38秒前
常超越发布了新的文献求助10
39秒前
叮dong发布了新的文献求助10
40秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3717910
求助须知:如何正确求助?哪些是违规求助? 3264569
关于积分的说明 9935013
捐赠科研通 2978368
什么是DOI,文献DOI怎么找? 1633398
邀请新用户注册赠送积分活动 775143
科研通“疑难数据库(出版商)”最低求助积分说明 745402