Video Based Mobility Monitoring of Elderly People Using Deep Learning Models

计算机科学 人工智能 卷积神经网络 机器学习 深度学习 二元分类 分类器(UML) 人工神经网络 支持向量机
作者
Laura Romeo,Roberto Marani,Tiziana D’Orazio,Grazia Cicirelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 2804-2819 被引量:13
标识
DOI:10.1109/access.2023.3234421
摘要

In recent years, the number of older people living alone has increased rapidly. Innovative vision systems to remotely assess people's mobility can help healthy, active, and happy aging. In the related literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition, the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four deep neural network architectures with feedback connections, even aided by a preliminary convolutional layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people's mobility, since deep networks can evaluate the quality of test executions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤海未蓝发布了新的文献求助10
1秒前
leungya完成签到,获得积分10
1秒前
文艺的芫完成签到,获得积分10
1秒前
领导范儿应助ZBW采纳,获得10
1秒前
旺仔先生完成签到,获得积分0
2秒前
2秒前
Answer完成签到,获得积分10
2秒前
Lucas应助颜云尔采纳,获得10
2秒前
卡卡龍特发布了新的文献求助10
2秒前
领导范儿应助mrz采纳,获得10
3秒前
NexusExplorer应助Giroro_roro采纳,获得10
3秒前
琉璃完成签到 ,获得积分10
3秒前
一粟的粉r发布了新的文献求助10
4秒前
深情安青应助Jiang采纳,获得10
4秒前
李健的小迷弟应助筋筋子采纳,获得10
4秒前
ipan918完成签到,获得积分10
4秒前
jaya发布了新的文献求助10
4秒前
迅速雨琴发布了新的文献求助10
5秒前
所所应助乔乔采纳,获得10
5秒前
自然1111发布了新的文献求助10
5秒前
5秒前
6秒前
wcy完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Lucas选李华完成签到 ,获得积分10
7秒前
7秒前
7秒前
orixero应助Hannah采纳,获得10
7秒前
poem发布了新的文献求助10
8秒前
我是老大应助xiaomili采纳,获得10
8秒前
搜集达人应助青青在努力采纳,获得10
9秒前
9秒前
9秒前
happyfei发布了新的文献求助10
10秒前
mmol完成签到,获得积分10
10秒前
10秒前
聪慧千亦发布了新的文献求助10
10秒前
weixiaozdw完成签到,获得积分10
10秒前
11秒前
外向跳跳糖完成签到,获得积分20
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620