Video Based Mobility Monitoring of Elderly People Using Deep Learning Models

计算机科学 人工智能 卷积神经网络 机器学习 深度学习 二元分类 分类器(UML) 人工神经网络 支持向量机
作者
Laura Romeo,Roberto Marani,Tiziana D’Orazio,Grazia Cicirelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 2804-2819 被引量:13
标识
DOI:10.1109/access.2023.3234421
摘要

In recent years, the number of older people living alone has increased rapidly. Innovative vision systems to remotely assess people's mobility can help healthy, active, and happy aging. In the related literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition, the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four deep neural network architectures with feedback connections, even aided by a preliminary convolutional layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people's mobility, since deep networks can evaluate the quality of test executions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jevon应助听听采纳,获得10
2秒前
VDC应助听听采纳,获得30
2秒前
3秒前
范雅寒完成签到 ,获得积分10
4秒前
4秒前
maoyu完成签到,获得积分10
6秒前
6秒前
冷傲的小之完成签到 ,获得积分10
7秒前
科研通AI2S应助晚晚采纳,获得10
8秒前
美美美美美栗林里莉完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
生命奋斗应助欢喜寄风采纳,获得10
10秒前
桐桐应助胡博士采纳,获得10
11秒前
11秒前
蓝絮絮发布了新的文献求助10
13秒前
towanda发布了新的文献求助10
13秒前
LIUYI完成签到,获得积分10
16秒前
nteicu发布了新的文献求助10
16秒前
18秒前
大个应助斯文谷秋采纳,获得20
19秒前
20秒前
20秒前
De.完成签到 ,获得积分10
21秒前
neiz完成签到,获得积分10
21秒前
22秒前
王兴博发布了新的文献求助10
23秒前
25秒前
小黄发布了新的文献求助20
26秒前
小美完成签到,获得积分10
27秒前
NPC-CBI完成签到,获得积分10
27秒前
FashionBoy应助雯雯雯雯雯采纳,获得10
27秒前
冰棍鸡杂完成签到,获得积分10
27秒前
瘦瘦友易发布了新的文献求助10
28秒前
SHUN完成签到 ,获得积分10
29秒前
qutt完成签到 ,获得积分10
30秒前
彭于晏应助葵葵采纳,获得10
31秒前
32秒前
研友_LN3BMn完成签到,获得积分10
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236263
求助须知:如何正确求助?哪些是违规求助? 2881992
关于积分的说明 8224575
捐赠科研通 2549972
什么是DOI,文献DOI怎么找? 1378858
科研通“疑难数据库(出版商)”最低求助积分说明 648478
邀请新用户注册赠送积分活动 623979