已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Video Based Mobility Monitoring of Elderly People Using Deep Learning Models

计算机科学 人工智能 卷积神经网络 机器学习 深度学习 二元分类 分类器(UML) 人工神经网络 支持向量机
作者
Laura Romeo,Roberto Marani,Tiziana D’Orazio,Grazia Cicirelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 2804-2819 被引量:13
标识
DOI:10.1109/access.2023.3234421
摘要

In recent years, the number of older people living alone has increased rapidly. Innovative vision systems to remotely assess people's mobility can help healthy, active, and happy aging. In the related literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition, the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four deep neural network architectures with feedback connections, even aided by a preliminary convolutional layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people's mobility, since deep networks can evaluate the quality of test executions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助王一一采纳,获得20
1秒前
1秒前
外向雁梅发布了新的文献求助10
1秒前
自信尔竹完成签到,获得积分10
3秒前
别看了完成签到,获得积分10
3秒前
年年发布了新的文献求助10
5秒前
che发布了新的文献求助10
6秒前
Jessica发布了新的文献求助10
7秒前
Lucas应助啊啊啊采纳,获得10
8秒前
我爱吃糯米团子完成签到,获得积分10
8秒前
充电宝应助ernest采纳,获得30
9秒前
rex完成签到,获得积分10
9秒前
10秒前
keep完成签到 ,获得积分10
10秒前
11秒前
左贵辉完成签到,获得积分20
12秒前
大个应助年年采纳,获得10
13秒前
harry完成签到,获得积分10
13秒前
heal发布了新的文献求助10
14秒前
14秒前
15秒前
ernest发布了新的文献求助30
15秒前
16秒前
harry发布了新的文献求助10
16秒前
领导范儿应助lee采纳,获得10
16秒前
16秒前
细腻的谷丝完成签到 ,获得积分20
16秒前
19秒前
20秒前
啊啊啊发布了新的文献求助10
20秒前
极速小鱼发布了新的文献求助10
20秒前
啦啦啦啦发布了新的文献求助10
20秒前
Orange应助灵巧电灯胆采纳,获得10
21秒前
田様应助悲凉的菠萝采纳,获得10
22秒前
zrn完成签到 ,获得积分10
22秒前
123发布了新的文献求助10
22秒前
淡淡尔烟发布了新的文献求助10
23秒前
phepromet完成签到 ,获得积分10
23秒前
快乐地称发布了新的文献求助10
24秒前
西瓜以亦完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663813
求助须知:如何正确求助?哪些是违规求助? 4853007
关于积分的说明 15105807
捐赠科研通 4822042
什么是DOI,文献DOI怎么找? 2581165
邀请新用户注册赠送积分活动 1535358
关于科研通互助平台的介绍 1493722