Video Based Mobility Monitoring of Elderly People Using Deep Learning Models

计算机科学 人工智能 卷积神经网络 机器学习 深度学习 二元分类 分类器(UML) 人工神经网络 支持向量机
作者
Laura Romeo,Roberto Marani,Tiziana D’Orazio,Grazia Cicirelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 2804-2819 被引量:13
标识
DOI:10.1109/access.2023.3234421
摘要

In recent years, the number of older people living alone has increased rapidly. Innovative vision systems to remotely assess people's mobility can help healthy, active, and happy aging. In the related literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition, the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four deep neural network architectures with feedback connections, even aided by a preliminary convolutional layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people's mobility, since deep networks can evaluate the quality of test executions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
向日葵发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
斯文的莞发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
王诗涵发布了新的文献求助10
4秒前
霹雳侠完成签到,获得积分10
4秒前
坚果完成签到,获得积分10
5秒前
CCC发布了新的文献求助50
5秒前
5秒前
粥游天下完成签到,获得积分10
5秒前
5秒前
牛豁完成签到,获得积分10
5秒前
6秒前
二九十二完成签到,获得积分10
6秒前
6秒前
7秒前
科研通AI6应助肖雨采纳,获得10
8秒前
小二郎应助满意雪碧采纳,获得10
9秒前
Gnehsnuy发布了新的文献求助30
9秒前
10秒前
zzzzz关注了科研通微信公众号
10秒前
Nichols完成签到,获得积分10
10秒前
think1805完成签到,获得积分10
11秒前
阿肖呀发布了新的文献求助10
11秒前
CXY发布了新的文献求助10
11秒前
科研通AI6应助英子采纳,获得10
12秒前
叶海天发布了新的文献求助30
13秒前
17秒前
17秒前
yyc发布了新的文献求助10
18秒前
19秒前
19秒前
澹台无发布了新的文献求助10
19秒前
专注安发布了新的文献求助10
20秒前
Iridescent发布了新的文献求助10
20秒前
刘骁萱完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578523
求助须知:如何正确求助?哪些是违规求助? 4663413
关于积分的说明 14746147
捐赠科研通 4604178
什么是DOI,文献DOI怎么找? 2526874
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465787