Video Based Mobility Monitoring of Elderly People Using Deep Learning Models

计算机科学 人工智能 卷积神经网络 机器学习 深度学习 二元分类 分类器(UML) 人工神经网络 支持向量机
作者
Laura Romeo,Roberto Marani,Tiziana D’Orazio,Grazia Cicirelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 2804-2819 被引量:13
标识
DOI:10.1109/access.2023.3234421
摘要

In recent years, the number of older people living alone has increased rapidly. Innovative vision systems to remotely assess people's mobility can help healthy, active, and happy aging. In the related literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition, the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four deep neural network architectures with feedback connections, even aided by a preliminary convolutional layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people's mobility, since deep networks can evaluate the quality of test executions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
Diane发布了新的文献求助30
2秒前
2秒前
wwwwwww发布了新的文献求助10
4秒前
lllhk发布了新的文献求助10
5秒前
舒心发布了新的文献求助10
7秒前
8秒前
梦醒尘世间完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
希望天下0贩的0应助舒心采纳,获得30
13秒前
14秒前
HaonanZhang发布了新的文献求助10
14秒前
文艺稚晴发布了新的文献求助10
14秒前
秋日银杏发布了新的文献求助10
15秒前
NexusExplorer应助landiao采纳,获得10
15秒前
Rookie发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
肖1完成签到,获得积分10
16秒前
taoatao发布了新的文献求助10
17秒前
我是第一名发布了新的文献求助100
18秒前
舒心完成签到,获得积分20
18秒前
JamesPei应助qqq采纳,获得10
19秒前
19秒前
旧时青发布了新的文献求助30
20秒前
ceeray23发布了新的文献求助20
20秒前
3sigma完成签到,获得积分10
20秒前
21秒前
躺平被带飞关注了科研通微信公众号
22秒前
23秒前
23秒前
赵哼哼给赵哼哼的求助进行了留言
23秒前
Rookie完成签到,获得积分10
24秒前
山河何以47关注了科研通微信公众号
24秒前
完美世界应助luis采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599355
求助须知:如何正确求助?哪些是违规求助? 4684915
关于积分的说明 14837110
捐赠科研通 4667789
什么是DOI,文献DOI怎么找? 2537887
邀请新用户注册赠送积分活动 1505378
关于科研通互助平台的介绍 1470783