Video Based Mobility Monitoring of Elderly People Using Deep Learning Models

计算机科学 人工智能 卷积神经网络 机器学习 深度学习 二元分类 分类器(UML) 人工神经网络 支持向量机
作者
Laura Romeo,Roberto Marani,Tiziana D’Orazio,Grazia Cicirelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 2804-2819 被引量:13
标识
DOI:10.1109/access.2023.3234421
摘要

In recent years, the number of older people living alone has increased rapidly. Innovative vision systems to remotely assess people's mobility can help healthy, active, and happy aging. In the related literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition, the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four deep neural network architectures with feedback connections, even aided by a preliminary convolutional layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people's mobility, since deep networks can evaluate the quality of test executions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Mr.Ren完成签到,获得积分10
刚刚
伊萨卡完成签到 ,获得积分10
刚刚
渥鸡蛋完成签到,获得积分10
刚刚
木南发布了新的文献求助10
1秒前
1秒前
科目三应助张景采纳,获得10
1秒前
zzz发布了新的文献求助10
1秒前
蝴蝶与猫完成签到 ,获得积分10
1秒前
2秒前
3秒前
开朗自行车完成签到 ,获得积分20
3秒前
今后应助活泼山雁采纳,获得10
3秒前
4秒前
十四完成签到 ,获得积分10
5秒前
橘子汽水完成签到 ,获得积分20
5秒前
xxn关注了科研通微信公众号
6秒前
8899发布了新的文献求助10
6秒前
6秒前
单纯乘风完成签到 ,获得积分10
7秒前
王七七发布了新的文献求助10
7秒前
7秒前
雨中漫步完成签到,获得积分0
8秒前
ding应助张鑫采纳,获得10
8秒前
9秒前
10秒前
慕青应助WY采纳,获得10
10秒前
song发布了新的文献求助10
10秒前
cc完成签到,获得积分10
10秒前
好久不见发布了新的文献求助10
11秒前
11秒前
wanci应助PDIF-CN2采纳,获得10
11秒前
Vme50完成签到,获得积分10
12秒前
李晓凤发布了新的文献求助10
12秒前
滋滋发布了新的文献求助10
14秒前
852应助幸福的初晴采纳,获得10
14秒前
顾矜应助小米采纳,获得10
14秒前
某卿完成签到,获得积分20
15秒前
15秒前
xxn发布了新的文献求助10
15秒前
Orange应助只为一碗饭采纳,获得10
15秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501188
求助须知:如何正确求助?哪些是违规求助? 4597536
关于积分的说明 14459486
捐赠科研通 4530972
什么是DOI,文献DOI怎么找? 2483024
邀请新用户注册赠送积分活动 1466722
关于科研通互助平台的介绍 1439335