Video Based Mobility Monitoring of Elderly People Using Deep Learning Models

计算机科学 人工智能 卷积神经网络 机器学习 深度学习 二元分类 分类器(UML) 人工神经网络 支持向量机
作者
Laura Romeo,Roberto Marani,Tiziana D’Orazio,Grazia Cicirelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 2804-2819 被引量:13
标识
DOI:10.1109/access.2023.3234421
摘要

In recent years, the number of older people living alone has increased rapidly. Innovative vision systems to remotely assess people's mobility can help healthy, active, and happy aging. In the related literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition, the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four deep neural network architectures with feedback connections, even aided by a preliminary convolutional layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people's mobility, since deep networks can evaluate the quality of test executions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助积极的花卷采纳,获得10
1秒前
3秒前
孤独梦安完成签到 ,获得积分10
3秒前
脑洞疼应助竹蜻蜓采纳,获得10
5秒前
8秒前
coco完成签到 ,获得积分10
8秒前
aha发布了新的文献求助10
8秒前
zt完成签到,获得积分20
8秒前
酷波er应助12采纳,获得50
9秒前
沉静亦寒完成签到 ,获得积分10
12秒前
天天快乐应助nusaber采纳,获得10
13秒前
沉静凡松发布了新的文献求助10
13秒前
烟花应助云海采纳,获得10
14秒前
16秒前
16秒前
16秒前
doudou完成签到 ,获得积分10
17秒前
西瓜撞地球完成签到 ,获得积分10
17秒前
afar完成签到,获得积分10
17秒前
aha完成签到,获得积分10
19秒前
20秒前
afar发布了新的文献求助10
21秒前
21秒前
冷傲含海发布了新的文献求助10
22秒前
zhaoyuli完成签到,获得积分10
22秒前
云海发布了新的文献求助10
26秒前
警察同志听我解释完成签到,获得积分10
26秒前
27秒前
山谷完成签到,获得积分10
27秒前
flyingpig完成签到,获得积分10
28秒前
syh5527029完成签到 ,获得积分10
29秒前
29秒前
彭于晏应助盛夏采纳,获得10
30秒前
30秒前
冷傲松鼠完成签到 ,获得积分10
31秒前
31秒前
执着的冬瓜完成签到 ,获得积分10
32秒前
32秒前
郭子仪发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560834
求助须知:如何正确求助?哪些是违规求助? 4646178
关于积分的说明 14677685
捐赠科研通 4587278
什么是DOI,文献DOI怎么找? 2516949
邀请新用户注册赠送积分活动 1490355
关于科研通互助平台的介绍 1461160