Video Based Mobility Monitoring of Elderly People Using Deep Learning Models

计算机科学 人工智能 卷积神经网络 机器学习 深度学习 二元分类 分类器(UML) 人工神经网络 支持向量机
作者
Laura Romeo,Roberto Marani,Tiziana D’Orazio,Grazia Cicirelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 2804-2819 被引量:13
标识
DOI:10.1109/access.2023.3234421
摘要

In recent years, the number of older people living alone has increased rapidly. Innovative vision systems to remotely assess people's mobility can help healthy, active, and happy aging. In the related literature, the mobility assessment of older people is not yet widespread in clinical practice. In addition, the poor availability of data typically forces the analyses to binary classification, e.g. normal/anomalous behavior, instead of processing exhaustive medical protocols. In this paper, real videos of elderly people performing three mobility tests of a clinical protocol are automatically categorized, emulating the complex evaluation process of expert physiotherapists. Videos acquired using low-cost cameras are initially processed to obtain skeletal information. A proper data augmentation technique is then used to enlarge the dataset variability. Thus, significant features are extracted to generate a set of inputs in the form of time series. Four deep neural network architectures with feedback connections, even aided by a preliminary convolutional layer, are proposed to label the input features in discrete classes or to estimate a continuous mobility score as the result of a regression task. The best results are achieved by the proposed Conv-BiLSTM classifier, which achieves the best accuracy, ranging between 88.12% and 90%. Further comparisons with shallow learning classifiers still prove the superiority of the deep Conv-BiLSTM classifier in assessing people's mobility, since deep networks can evaluate the quality of test executions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
曾阿牛发布了新的文献求助30
3秒前
4秒前
无花果应助yang采纳,获得10
5秒前
5秒前
bearbiscuit完成签到,获得积分10
6秒前
科目三应助王旺采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
李在佛甚么关注了科研通微信公众号
9秒前
10秒前
今后应助毕瑞欣采纳,获得10
10秒前
慕青应助曾阿牛采纳,获得10
10秒前
科研通AI5应助薯条采纳,获得30
11秒前
wanci应助Folger采纳,获得30
11秒前
Alpha发布了新的文献求助10
11秒前
laoleigang完成签到,获得积分10
13秒前
lorryliu发布了新的文献求助10
13秒前
纯真沛儿发布了新的文献求助10
13秒前
xxxx发布了新的文献求助10
13秒前
XXY完成签到,获得积分10
14秒前
华仔应助橙子采纳,获得10
14秒前
情怀应助crillzlol采纳,获得10
14秒前
15秒前
15秒前
lemonyu发布了新的文献求助10
16秒前
有趣的灵魂完成签到,获得积分10
17秒前
自由十三完成签到 ,获得积分10
17秒前
浮游给李fr的求助进行了留言
18秒前
20秒前
鱼子西发布了新的文献求助10
20秒前
21秒前
22秒前
一只鱼完成签到,获得积分10
22秒前
乐乐应助火焰鼠采纳,获得10
22秒前
23秒前
23秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972