相互信息
排列(音乐)
混乱的
系列(地层学)
计算机科学
随机排列
相关性
信息流
皮尔逊积矩相关系数
相关系数
算法
混沌系统
模式识别(心理学)
人工智能
数学
数据挖掘
理论计算机科学
统计
机器学习
离散数学
对称群
古生物学
语言学
哲学
物理
几何学
声学
生物
标识
DOI:10.1016/j.chaos.2022.112992
摘要
In this paper, we extend convergent cross mapping (CCM) and propose symbolic CCM (SCCM), which uses mutual information based on permutation pattern instead of Pearson correlation coefficient to estimate cross-mapping ability. We numerically demonstrate that SCCM is a robust method for quantifying information flow between time series in chaotic systems, even under the influence of noises. Using the method, we analyze the multichannel EEG signals of ADHD children and control children, and identify the differences between the two groups of subjects with reliable results.
科研通智能强力驱动
Strongly Powered by AbleSci AI